

IPC-7091A

Design and Assembly Process Implementation of 3D Components

Developed by the 3D Electronic Packages Guideline Task Group (B-11a) of the Packaged Electronic Components Committee (B-10) of IPC

Supersedes:

IPC-7091 - June, 2017

Users of this publication are encouraged to participate in the development of future revisions.

Contact:

IPC

Tel 847 615.7100 Fax 847 615.7105 January 2023 IPC-7091A

Table of Contents

1	SCOPE 1	3.3	Embedded Circuitry Technology 9
1.1	Purpose	3.4	Advanced Packages
1.1.1	Target Audience	4 DE	VICE CONSIDERATIONS
1.1.2	Intent	4.1	Package Assembly Variations
1.2	Classification	4.1.1	Die Stack (Wire Bond)
1.3	Measurement Units	4.1.2	Package-on-Package (PoP) Technologies 11
1.4	Use of "Lead"	4.1.3	Through Mold Via (TMV)
1.5	Abbreviations and Acronyms 1	4.1.4	Through-Mold Interconnect (TMI)
1.6	Terms and Definitions	4.1.5	High-Density Package-on-Package (PoP)12
1.6.1	Die	4.1.5.1	Cu Pillar Interconnect (CuPI)
1.6.2	Electronic Element	4.1.5.2	Micro-Pillar (μPILR)
1.6.3	Interposer	4.1.5.3	Bond Via Array (BVA)
1.6.4	Substrate	4.1.5.4	Direct-Bond Interconnect (DBI)
1.6.5	Electronic Package	4.1.6	Folded Stack Packaging
1.6.6	Electronic Module 2	4.1.7	Package-on-Package Interposer (PoPi)
1.6.7	Three-Dimensional (3D) Packaging 2	4.1.8	Thin Small Outline Package (TSOP)
1.7	Implementation Challenges 2		Stacking
2	APPLICABLE DOCUMENTS	4.1.9	High Band Memory (HBM)
2.1	IPC	4.1.9.1	Silicon Bridge Interposer
2.2	Joint Industry Standards 4	4.1.9.2	Embedded Multi-Die Interconnect Bridge
2.3	JEDEC 4		(EMIB)
2.4	Government Electronics and Information	4.1.10	Die/Wafer Stack Cu-to-Cu
	Technology Association (GEIA)4	4.1.10.1	Cu-Sn-Cu Fusion Bond
3	GENERAL DESCRIPTION 4	4.1.10.2	Thermocompression Bonding
3.1	Technology Overview 4	4.1.10.3	Adhesion Bonding
3.1.1	Die Stack Package	4.1.11	Three-Dimensional (3D) Interposer/Substrate Packaging
3.1.2	Package Stack 5	4.2	General Requirements
3.1.3	Package-on-Package (PoP) 5	4.3	Device Preparation
3.1.4	Interposer	4.3.1	Cleaning
3.1.5	Through-Silicon Via (TSV)6	4.3.2	Baking
3.1.6	Through-Glass Via (TGV) 6	4.3.3	Changing Termination Material
3.1.7	System on Chip (SoC)	4.3.3.1	Deballing
3.1.8	System in Package (SiP) 6	4.3.3.2	Reballing
3.1.9	Wafer-Level Packaging (WLP)6	4.3.3.3	Outsourcing Solutions
3.1.10		4.3.3.4	Mixed/Backward Compatibility
3.1.11		1.5.5.1	Solder Processing
3.2	Package Geometric Space	4.3.3.5	Underfill for Mixed-Alloy Soldering 20
3.2.1	Two-Dimensional (2D) Package	4.4	Passive-Component Integration
3.2.2	Two-and-a-Half-Dimensional (2.5D) Package 8		(Organic Base Material)
3.2.3	Three-Dimensional (3D) Package 8	4.4.1	Formed Resistors
	, , , , , , , , , , , , , , , , , , ,	4.4.1.1	Etch-Formed Resistors

IPC-7091A January 2023

4.4.1.2 4.4.2	Discrete Resistors	5.8	Conductor Characteristics (Metallization on Ceramic)
4.4.2.1	Discrete (Placed) Capacitors	6 PR	OCESS MATERIALS33
4.4.3	Formed Inductors	6.1	Adhesives (Conductive and Nonconductive) 33
4.4.4	Discrete Inductors	6.1.1	Polymer Adhesives
4.5	Passive Component Integration	6.1.1.1	Thermoset Materials
4.5	(Nonorganic Base Material)	6.1.1.2	Thermoplastic Materials
4.5.1	Formed Resistors	6.1.2	Dry-Film Adhesive
4.5.2	Formed Capacitors	6.1.2.1	Die-Attach Film Application
4.5.3	Formed Inductors	6.2	Solder Materials
4.6	Semiconductor Die Issues		
4.6.1	Surface Redistribution		CKAGE-LEVEL STANDARDIZATION
4.7	Postprocess Validations	7.1	Package Outline Standards
4.7.1	Solder on Pad (Flip-Chip)	7.1.1	Ball Grid Array (BGA)
4.7.2	Known Good Die (KGD)	7.1.2	Fine-Pitch BGA (FBGA/FIBGA)
4.8	Component Handling	7.1.3	Package-on-Package (PoP)
4.8.1	Packaging	7.1.4	Through-Mold Via (TMV) Package-on-Package (PoP)
4.8.2	Component Storage	7.1.5	Wafer-Level Ball Grid Array (WLBGA) 38
4.9	Thermal Management of 3D Components 25	7.1.6	Stacked-Die Packaging Standards
4.9.1	Thermal Conduction/Convection	8 PRI	NTED BOARD AND OTHER MOUNTING
4.9.2	Thermal Transfer Mechanisms		SE OR BOARD STACK-UP
4.9.3	Advanced Thermal Interface Materials 26	СО	NSIDERATIONS
4.9.4	High-Conductivity Mold Compounds28	8.1	Printed Board Technology
4.9.5	Liquid Cooling	8.1.1	Multilevel Substrate
4.9.6	Microfluidic Cooling	8.2	Mounting Base
4.9.7	Single-Phase Intertier Cooling	8.3	Surface Finish for Placed Components 40
4.9.8	Two-Phase Intertier Cooling	8.3.1	Electroless Nickel/Immersion Gold (ENIG) 40 $$
4.9.9	Heat Pipes	8.3.2	Electroless Nickel/Electroless
4.9.10	Microchannel and Minichannel Cooling29		Palladium/Immersion Gold (ENEPIG) 40
4.9.11	Thermal Modeling	8.3.3	Organic Solderability Preservative (OSP)40
4.10	Cost Consideration	8.3.4	Electrolytic Nickel/Electrolytic Gold (ENEG)
5 INT	ERPOSER/SUBSTRATE MATERIALS 30	8.3.5	Direct Immersion Gold (DIG)
5.1	Organic Interposer	8.3.6	Immersion Silver
5.1.1	Organic, CTE Matching Interposer Material31	8.3.7	Immersion Tin
5.1.2	Organic-Based Interposer Fabrication Process . 31	8.3.8	Cu (Chemical Deposition and Electroplate) 41
5.2	Glass Interposer	8.4	Embedded-Component Technology
5.3	Silicon Interposers	8.4.1	Formed Resistor Process
5.4	Ceramic Substrate/Interposer	8.4.1.1	Design Criteria for Sheet-Film-Type Resistor
5.5	Conductor Characteristics (Cu Foil/Film)32	0.4.1.1	Elements
5.6	Conductor Characteristics (Cu Toll/Tillil)32	8.4.2	Capacitor Formation Process
5.0	(Metallization on Silicon)	8.4.3	Planar Capacitance
5.7	Conductor Characteristics	8.4.3.1	Plane Layer Separation
	(Metallization on Glass)	8.4.4	Discrete Formed Capacitor Element 42
			•

8.4.5	Discrete Inductor Forming 42	9.2.1.2	Ceramic-Based Interposer Design	50
8.4.6	Discrete Component Placement 43	9.2.2	External (Surface) Component Mounting 5	50
8.4.6.1	Discrete Resistor and Capacitor Placement 43	9.2.2.1	Solder Attachment	50
8.4.6.2	Discrete Inductor Placement	9.2.2.2	Conductive Polymer Attachment	50
8.4.6.3	Active-Die Element Placement	9.2.3	Internal (Embedded) Component Mounting 5	50
8.4.6.4	Surface Finishes for UBM Plating 44	9.2.4	Circuit Interface Techniques	50
8.4.6.4.1	Electroless Nickel/Immersion Gold (ENIG) 44	9.2.4.1	Organic-Based Interposer Design	50
8.4.6.4.2	Electroless Nickel/Electroless	9.2.5	Internal Discrete Heat Sink	52
	Palladium/Immersion Gold (ENEPIG) 44	9.2.5.1	Organic-Based Interposer Design	52
8.4.6.4.3	Cu Under-Bump Metallization	9.3	Layout Strategy	52
8.4.6.5	(UBM) Plating	9.3.1	Product Functional Description	52
8.4.6.3		9.3.2	Engineering Actions	52
8.3	Substrate and Interposer Materials (Package Level)	9.3.3	Design Density Analysis	52
8.5.1	Organic Circuit Structure	9.3.4	Embedded Component Selection	53
8.5.2	Ceramic Circuit Structure	9.3.4.1	Embedding Passive Components	53
8.5.2.1	Metallization on Ceramic	9.3.4.2	Embedding Active Components	53
8.5.3	Silicon Circuit Structure	9.3.5	Embedded-Component Circuit Interface 5	53
8.5.4	Glass Circuit Structure	9.4	Multilayer Substrate Construction	
8.6	Dielectric Impregnation		and Geometries	54
8.6.1	Reinforced Prepreg	9.4.1	Build-Up Circuit Layers on Glass Base Structures	54
8.6.2	Unreinforced Resin	9.4.2	Build-Up Circuit Layers on	
8.6.3	Resin-Coated Cu (RCC)		Silicon Base Structures	54
8.7	Via Hole Preparation and Interconnectivity 46	9.5	Component Attachment on	
8.7.1	Through-Glass Via (TGV) Connection to		Multilevel Assembly	
	Printed Board Cu	9.5.1	Conductive Polymers	
8.7.2	Through-Glass Via (TGV) Connection to Component Terminations 46	9.5.2	Dry-Film Adhesives	
8.7.3	Through-Glass Via (TGV) Formation 46	9.5.3	Solder Attachment	55
8.7.4	Through-Silicon Via (TSV) Formation 47	9.6	Circuit Routing Strategy (Organic and Nonorganic)	<i>5 5</i>
8.7.5	Via Filling	9.6.1	Organic-Based Substrates	
8.7.6	Alternative Via Plating on	9.6.2	Silicon and Glass Interposers	
8.7.0	Silicon-Based Interposers	9.6.2	Ī	
8.7.7	Conductor Forming on Silicon Interposers 48	9.0.3 9.7	Ceramic-Based Substrates and Interposers 5 Documentation	
8.8	Build-Up Layers and Via Hole Preparation –	9.7.1	Documentation Package	
	Redistribution Layer (RDL) on	9.7.1	Bill of Materials (BoM).	
	Silicon and Glass			
8.8.1	Silicon Interposer Metallization 48	9.7.3	Software Tools and Data Transfer	
8.8.2	Glass Interposer Metallization 48	9.7.4	General Rules for 3D Design	90
8.9	Multilevel Printed Board – Cavity Board 48		SEMBLY OF 3D PACKAGES ON INTED BOARDS5	56
9 DE	SIGN METHODOLOGY49	10.1	Package-on-Package (PoP) Assembly Process . 5	
9.1	Design Challenges	10.1.1	Package-on-Package (PoP) Fluxing Options 5	
9.2	Total Circuit Consideration 49	10.1.1	Package-on-Package (PoP) Fluxing Process5	
9.2.1	Internal (Embedded) Component Mounting 49	10.1.2.1	Flux Coverage	
9.2.1.1	Organic-Based Interposers 49	10.1.2.1	Trun Coverage	,0

10.1.2.2	Dwell Time (Hold Time) Speed 58	10.9.3	Removable and Reworkable Underfill	71
10.1.2.3	Retracting Speed	10.9.4	Corner Bonding/Glue Bonding	71
10.1.2.4	Retracting Force	10.9.5	Molded Underfill (MUF)	71
10.1.3	Flux Height Statistical Process Control 58	10.9.6	Vacuum Underfill (VUF)	72
10.1.4	Paste Dip	10.9.7	Wafer-Applied Underfill	72
10.1.5	Prestacking Process	10.9.8	Underfill Inspection	72
10.1.6	Through-Mold Via (TMV)	10.9.8.1	Causes of Voids	72
	Assembly Considerations	10.9.8.2	Void Characteristics	73
10.1.7	Package-on-Package (PoP) Stand-Off Height (SOH)	10.9.8.3	Test Strategies	73
10.1.8	Package-on-Package (PoP) Die Gap 60	10.9.8.4	Flow-Pattern Voids	73
10.1.6	Three-Dimensional (3D) Printing 61	10.9.8.5	Moisture Voids	73
10.2.1	Cavity Printing	10.9.8.6	Effect of Contamination	73
10.2.1	Jet Printing	11 TES	STING AND PRODUCT VERIFICATION	73
10.2.3	Paste Dispensing 61	11.1	Establishing Test Requirements	73
10.2.4	Cavity Keep-Out Zone	11.2	Assembly Process Qualification	74
10.3	Multilevel Placement	11.2.1	Package-Level Stress Test	74
10.3.1	Parameters	11.3	Substrate Test Coupons	75
10.3.2	Cavity Design	12 RE	LIABILITY	75
10.3.3	Plateau Design	12.1	Reliability Considerations	
10.4	Die Attachment	12.2	Design for Reliability (DfR) Principles	
10.4.1	Direct Chip Attachment	12.3	End-Use Relationship	
10.4.2	Die-to-Substrate Reinforcement 64	12.3.1	Temperature Cycle Condition	
10.5	Reflow Soldering Considerations for	12.3.2	Test Duration	
	3D Components	12.3.3	Number of Samples	
10.5.1	Low-Temperature Soldering (LTS) of 3D Components	12.4	Effects of Pb-Free Materials and Pure-Sn Finishes on Reliability	78
10.5.1.1	Drivers for Low-Temperature Solders in 3D Assembly	12.5	Validation, Qualification and Accelerated Aging Test for Reliability	
10.5.1.2	Choice of Low-Temperature Solder Alloys 66	12.6	Environmental Testing	
10.5.1.3	Mixed-Alloy LTS-SAC (Hybrid Joint)67	13 DE	FECT AND FAILURE ANALYSIS	
10.6	3D Component Inspection Techniques 67	13.1	Nondestructive Failure Analysis	
10.6.1	X-Ray Inspection Techniques 67	13.1.1	Electrical Testing.	
10.6.2	Acoustic Microscopy (AM)	13.1.1	Functional Testing (FT).	
10.7	Inspection Techniques	13.1.1.2	Modeled Fault Testing (MFT)	
10.7.1	Rework with Convection Reflow Soldering 70	13.1.1.3	Iddq	
10.7.1	Rework with Infrared (IR) Reflow Soldering 70	13.1.1.4	Time-Domain Reflectometer (TDR)	
10.7.2	Rework with Laser Soldering	13.2	Internal Nondestructive Inspection	
10.7.3	Underfill	13.2.1	Acoustic Microscopy (AM).	
10.8.1	Package-to-Printed Board Reinforcement71	13.2.2	X-Ray Imaging	
10.9	Material Selection and Application	13.2.3	Infrared (IR).	
10.9.1	Capillary Flow Underfill	13.2.3.1	Infrared (IR) Thermography (IRT)/Thermal	-
10.9.2	No-Flow/Fluxing Underfill		Imaging	80

13.2.3.2	Infrared (IR) Microscopy	Figure 3-8	Example of a 2.5D System in Package (SiP)8
13.2.4 13.2.5	Magnetic Current Imaging (MCI)	Figure 3-9	3D Package-on-Package (PoP) and System
13.2.5	Internal Optical Inspection	C	in Package (SiP) on a Printed Board 8
13.2.7	Chemical Analysis	Figure 3-10	Ball Grid Array (BGA) Substrate with Embedded Active and Passive Elements 9
13.3	Destructive Failure Analysis 81	Figure 3-11	Advanced Package Trends 9
13.3.1	Cross-Sectioning	Figure 4-1	Comparing Current Two-Die and
13.3.2	Parallel Lapping		Quad-Die Package Solutions
13.3.3	Decapsulation	Figure 4-2	Standard Package-on-Package (PoP)
13.4	Optical Inspection	E: 4.2	Example with Stacked Die
13.4.1	Optical Inspection (After Assembly) 82	Figure 4-3	Through-Mold Via (TMV) Package-on-Package (PoP)11
13.4.2	Confocal Laser Scanning Microscopy (CLSM)	Figure 4-4	Lower Package-on-Package (PoP) Section with Through-Mold Vias (TMVs)
13.5	Examples of Observed External Inspection	Figure 4-5	Through-Mold Via (TMV) Solder Balls11
13.5.1	Defects	Figure 4-6	Lower Package-on-Package (PoP) Section with Through Mold Interconnect (TMI)12
13.5.2	Package-on-Package (PoP) Joining Defects 83	Figure 4-7	Cu Pillar Interconnect (CuPI)
13.5.3	Nonwet Open (NWO) Joint	T: 4.0	Package-on-Package (PoP)
13.5.4 13.5.5	Bridging on Package-on-Package (PoP) 83 Through-Mold Via Head on Pillow (HoP) 83	Figure 4-8	High-Density Micro-Pillar (μPILR) Array Packaging
13.5.6	Insufficient Solder/Flux84	Figure 4-9	Bond Via Array (BVA) With Fine-Pitch Cu Wire Interconnect
13.5.7	Incomplete Solder Reflow	Figure 4-10	Direct Bond Interface (DBI)14
13.5.8	Missing Solder Ball	Figure 4-11	Three-Memory Die on Flexible Circuit
13.5.9	Nonuniform or Missing Solder Deposition 84		Substrate
13.5.10	Voids and Uneven Solder	Figure 4-12	Package-on-Package Interposer (PoPi) 14
	BASSEMBLY CONTRACTOR SELECTION D QUALIFICATION	Figure 4-13	Stacked Thin Small Outline Package (TSOP) Devices
14.1	Factory and Process Audits	Figure 4-14	High-Band Memory (HBM)15
14.2 14.3	Site Visit Procedure	Figure 4-15	Silicon Bridge Interposer with Stacked Die and HBM
14.4	Observations and Recommendations 86	Figure 4-16	Embedded Multi-Die Interconnect Bridge
Appendix			(EMIB)
	Figures	Figure 4-17	Through-Silicon Via (TSV)16
Figure 1-	-	Figure 4-18	Fusion Bond Process
Figure 3-		Figure 4-19	Intermetallic Bonds (Cu/Cu3Sn/Cu) 17
Figure 3-	c ,	Figure 4-20	Intermetallic Thermo-compression Bonding
Figure 3-	•	Figure 4-21	Benchtop Small-Batch Ultrasonic Cleaner
Figure 3-	4 System in Package (SiP) Example 6	Figure 4-22	JEDEC-Compliant Carrier Tray
Figure 3-	Wafer-Level Packaging (WLP) for High-Performance Memory	Figure 4-23	SnPb and Mixed-Metallurgy Ball Grid Array (BGA) Solder Joints
Figure 3-	6 Fanout Wafer Level Package Examples 7	Figure 4-24	Formed Resistor Elements
Figure 3-	7 Example of a 2D System in Package 7	Figure 4-25	Trench or Pillar Capacitor in Silicon 22

IPC-7091A January 2023

Figure 4-26	Surface Redistribution	Figure 8-3	Pull-Up and Pull-Down Resistors Using Thin-Film Material
Figure 4-27	Contact Variations for Flip-Chip Mounting	Figure 8-4	Formed Multilayer Capacitor Element 42
Figure 4-28	Partitioned Carrier Trays for Ball Grid	Figure 8-5	Etched Cu Spiral Inductor Pattern
Figure 4-29	Array (BGA) Components	Figure 8-6	0603 Components Embedded into a Cavity Feature in the Substrate43
Figure 4-30	Thermal Conduction	Figure 8-7	Three-Dimensional (3D) Die Stack Package
Figure 4-31	Thermal Transfer Paths	1 iguic 6-7	Using Cu Wire-Bond Processing
Figure 4-32	Thermal Resistance Versus Bondline Thickness for State-of-the-Art Thermal	Figure 8-8	Additive Redistribution Layer (RDL) to Array Contact Site
	Greases and Gels	Figure 8-9	Merging Organic and Silicon-Based
Figure 4-33	Advances in Thermal Resistance with		Materials for 3D Semiconductor Packaging
	Thinner and Higher-Conductivity Reliable Materials	Figure 8-10	Ceramic-Based Interposer
Figure 4-34	Nanosilver Interconnections	Figure 8-11	Through-Glass Via (TGV)
•		•	
Figure 4-35	Advances in 3D Packages with Fan-Out Wafer-Level Packaging (FOWLP) and	Figure 8-12	Through-Glass Via (TGV)-Formed Glass Substrates
	Die-Embedding (Left) and High-Thermal-Conductivity Composites with Advanced Boron Nitride Fillers and	Figure 8-13	Metallized Through-Glass Via (TGV) X-Ray Photos
	Surface Treatments (Right)28	Figure 8-14	Cu-Filled Through-Silicon Via (TSV)
Figure 4-36	Liquid Heat Pipe Exchange System 28		Interface Between Wafers – Active Side and Back Side
Figure 4-37	Comparison of 3D Integrated Circuits (ICs) Utilizing Different Cooling	Figure 8-15	Comparing Via Deposition Methodology
Figure 5-1	Technologies	Figure 8-16	Comparison of Component in a Cavity Versus on the Board Surface48
	Through-Silicon Via (TSV)	Figure 8-17	Cavity Design Example
	Interconnects	Figure 9-1	Embedded Semiconductor Substrate 54
Figure 5-2	Glass Wafer and Panel Substrates	Figure 9-2	Glass Interposer With 40-µm Pitch
Figure 5-3	Microcrystalline-Silicon Ingot		Bumps and L/S = $2 \mu m / 2 \mu m \dots 54$
Figure 5-4	Flattened Feature on Wafer Edge Identifies	Figure 9-3	Two-Layer Build-Up Circuit Interposer 54
	Wafer Orientation During Fabrication Processes	Figure 10-1	Package-on-Package (PoP) Assembly Principle
Figure 5-5	Ceramic Panel Prior to Metallization 32	Figure 10-2	Package-on-Package (PoP)
Figure 7-1	Ball Grid Array (BGA) Package Outline 36		Fluxing Units57
Figure 7-2	Fine-Pitch Ball Grid Array	Figure 10-3	Ball Grid Array (BGA) Flux Coverage58
	(FBGA/FIBGA)	_	Flux Transfer to a Cu Coupon
Figure 7-3	Fine-Pitch Ball Grid Array (FBGA/FIBGA) Contact Diameter and Pitch Variations37	Figure 10-5	Flux Height Measurement Gauges 58
Figure 7-4	JEDEC Package-on-Package (PoP)	Figure 10-6	Solder Balls After Paste Dip59
riguie /-4	Construction Variations	Figure 10-7	Carrier with Prestacked Packages 59
Figure 7-5	Contact Redistribution at the Wafer Level Provides a Method for Furnishing a	Figure 10-8	Soldering Surface of Through-Mold Via (TMV) Balls
	Uniform Array Format to Better	Figure 10-9	Ball Collapse
	Accommodate Face-Down Mounting 38	Figure 10-10	Z-Height of a Package-on-Package
Figure 8-1	Two-Level Substrate with Embedded		(PoP)60
E' 0.5	Components	_	Joint Stand-Off Height (SOH)60
Figure 8-2	Ball Grid Array (BGA) Package Adopting an Embedded-Component Substrate 41	Figure 10-12	Package-on-Package (PoP) Die Gap60

Figure 10-13	Cavity and 3D Stencil61	Figure 10-38	Comparing Two-Step Underfill Plus
Figure 10-14	Three-Dimensional (3D) Stencil with a Cavity Pocket on the Right61		Mold Process (A) to the One-Step Molded Underfill Packaged Die (B)72
Figure 10-15	Slit-Metal Squeegee	Figure 10-39	Void in Underfill Under Array-Configured Flip-Chip Die
Figure 10-16	Package-on-Package (PoP) Mounted into a Cavity	Figure 11-1	Quality Document System
Figure 10-17	Jet Printing of Solder Paste for a 0.8-mm [0.031-in] BGA	Figure 13-1	Acoustical Microscopy (AM) Can Identify Voids, Delamination and Cracks 80
Figure 10-18	Multiple-Deposit Jet Printing for Customized Deposit Volumes	Figure 13-2	3D Submicron X-Ray Imaging Distinctly Identifying Solder Bridging 80
Figure 10-19	3D Jet Printing on Camera Module 62	Figure 13-3	$Die\text{-to-Silicon-to-Substrate Assembly} \ \dots \ 82$
_	Cavity Keep-Out Zone	Figure 13-4	Semiconductor Package Decapsulation
Figure 10-21	Multilevel Printed Board	Eigung 12 5	System
Figure 10-22	Avoiding Interference in Multilevel	Figure 13-5	Head on Pillow (HoP) Solder Process Defect
Figure 10-23	Placement Design	Figure 13-6	Poor Coalesce Between Sphere and Interposer Land83
Figure 10-24	Capillary Flow of Liquid Epoxy Fully	Figure 13-7	Nonwetting Defect, Exhibiting the Effect of Excessive Oxidation 83
	Encapsulating and Stabilizing the Area Between Two Parallel Surfaces	Figure 13-8	Endoscopy Edge View of Solder Bridge Between Ball Grid Array (BGA) Sphere
Figure 10-25	Soldering Material in Package-on-Package (PoP) Assembly		Contacts
Eiguro 10 26	(PoP) Assembly	Figure 13-9	Bridging on Package-on-Package (Pop)84
_	Board Stacking with Interposer	Figure 13-10	Defect Attributed to Oxide Contamination
Figure 10-28	Low-Temperature Alloys with Liquidus Temperatures Between 100 °C and	Figure 13-11	Comparison of Wetting Characteristics of Two Surface Finishes
	200 °C and Which Do Not Contain Pb, Cd or Au	Figure 13-12	Incomplete Solder Reflow84
Figure 10-29	Mixed-Alloy BGA Solder Joint Formed	Figure 13-13	Missing Solder Ball
	with SAC Ball Soldered with Ductile Metallurgy BiSn Solder Paste66		Tables
Figure 10-30	Package-on-Package (PoP) With	Table 4-1	Through-Mold Via (TMV) Examples 12
	Overlapping Memory Balls 67	Table 5-1	Interposer Material Properties Comparison
Figure 10-31	Package-on-Package (PoP) with Overlapping Memory Balls Viewed with 3D Laminography X-Ray	Table 7-1	Plastic Ball Grid Array (PBGA) Contact Diameter and Pitch Variations36
Figure 10-32	Head on Pillow (HoP) 3D Laminography Image	Table 7-2	Fine-Pitch Ball Grid Array (FBGA/FIBGA) Contact Diameter and Pitch Variations
Figure 10-33	Tilted 2D X-Ray View of Through-Mold Interconnect (TMI) Package-on-Package (PoP) with Head on Pillow (HoP) Defect on the Memory	Table 7-3	Comparing Wafer-Level Ball Grid Array (WLBGA) Contact Pitch to Ball or Bump Contact Diameter Range
Figure 10-34	AM Images of a 3D Devices with and without Acceptable Defects 69	Table 9-1	Typical Feature Sizes for High Density Interconnect (HDI) Substrate
Figure 10-35	Rework with Laser Soldering70	Table 10-1	Constructions, µm [mil]
Figure 10-36	Package-to-Printed Board Reinforcement	Table 10-1	Stand-Off Height (SOH) of 0.4-mm [0.016-in] Package-on-Package (PoP) With 200-µm Balls
Figure 10-37	Edge Dispensing of Underfill Material 71		,

January 2023 IPC-7091A

Design and Assembly Process Implementation of 3D Components

1 SCOPE

This document describes the design and assembly challenges and ways to address those challenges for implementing 3D component technology. Recognizing the effects of combining multiple uncased semiconductor die elements in a single-package format can impact individual component characteristics and can dictate suitable assembly methodology. The information contained in this standard focuses on achieving optimum functionality, process assessment, end-product reliability and repair issues associated with 3D semiconductor package assembly and processing.

- **1.1 Purpose** Performance-driven electronic systems continue to challenge companies in search of more innovative semiconductor package methodologies. The key market driver for semiconductor package technology is to provide greater functionality and improved performance without increasing package size. The package interposer is the key enabler. Although glass-reinforced epoxy-based materials and high-density Cu interconnect capability will continue to have a primary role for array-configured packaging, there is a trend toward alternative dielectric platforms as well as toward combining multiple functions within the same die element. To address this movement, an increasing number of semiconductor die developed for advanced applications now require higher I/O with contact pitch variations that are significantly smaller than the mainstream semiconductor products previously in the market. For these applications, companies are developing interposer technologies that can provide interconnect densities far superior to organic-based counterparts.
- 1.1.1 Target Audience The target audiences for this standard are managers, design/process engineers and operators who deal with:
- Implementing 3D semiconductor packaging
- · Interposer, substrate and printed board design
- · Board-level assembly, inspection and repair processes
- **1.1.2 Intent** This standard intends to provide useful and practical information to those who are designing, developing or using 3D-packaged semiconductor components or those who are considering 3D package implementation. The 3D semiconductor package may include multiple die elements—some homogeneous and some heterogeneous. The package may also include several discrete passive SMT devices, some of which are surface mounted and some of which are integrated (embedded) within the components' substrate structure.
- **1.2 Classification** IPC standards recognize that electrical and electronic assemblies are subject to classifications by intended end-item use. Three general end-product classes have been established to reflect differences in manufacturability, complexity, functional performance requirements, and verification (inspection/test) frequency. It should be recognized that there may be overlaps of equipment between classes.

CLASS 1 General Electronic Products

Includes products suitable for applications where the major requirement is function of the completed assembly.

CLASS 2 Dedicated Service Electronic Products

Includes products where continued performance and extended life is required, and for which uninterrupted service is desired but not critical. Typically, the end-use environment would not cause failures.

CLASS 3 High Performance/Harsh Environment Electronic Products

Includes products where continued high performance or performance-on-demand is critical, equipment downtime cannot be tolerated, end-use environment may be uncommonly harsh, and the equipment must function when required, such as life support or other critical systems.

- **1.3 Measurement Units** All dimensions and tolerances in this specification are expressed in hard SI (metric) units and bracketed soft imperial [inch] units. Users of this specification are expected to use metric dimensions. All dimensions ≥ 1 mm [0.0394 in] will be expressed in millimeters and inches. All dimensions ≤ 1 mm [0.0394 in] will be expressed in micrometers and microinches.
- **1.4 Use of "Lead"** For readability and translation, this document uses the noun lead only to describe leads of a component. The metallic element lead is always written as Pb.
- **1.5 Abbreviations and Acronyms** Periodic table elements are abbreviated in the standard. See Appendix A for full spellings of abbreviations (including elements) and acronyms used in this standard.

IPC-7091A January 2023

1.6 Terms and Definitions Other than those terms listed below, the definitions of terms used in this standard are in accordance with IPC-T-50.

1.6.1 Die* Separated piece(s) of a semiconductor wafer that constitutes a discrete semiconductor or integrated circuit (IC). They are normally uncased and leadless forms of an electronic component.

- *singular or plural
- 1.6.2 Electronic Element A bare die/wafer or discrete component (resistor, capacitor, inductor, transistor, diode, fuse, etc.) with metallized terminals or terminations ready for mounting. The element can be an IC or a discrete electrical, optical or microelectronic mechanical system (MEMS) element. Individual elements cannot be further reduced without destroying their stated function.
- **1.6.3** Interposer A material placed between two surfaces to provide electrical insulation, redistribution of electrical connections, mechanical strength and/or controlled mechanical and thermal separation between the two surfaces.
- **1.6.4 Substrate** The insulating material upon which a conductive pattern may be formed. (The base material may be rigid or flexible. It may be a dielectric or insulated metal sheet.) For this document, the term substrate refers to an interconnect platform fabricated from organic dielectric materials (rigid, flexible or a combination of rigid and flexible materials). Sometimes referred to as package substrate.
- **1.6.5 Electronic Package** An individual electronic element or elements in a container that protect the contents to ensure integrity and provide terminals to interconnect the container to an outer circuit. Package outline is generally standardized or meets guideline documents. A package may function as electronic, optoelectronic or MEMS, and it may include bioelectronic elements (e.g., sensors).
- **1.6.6 Electronic Module** A functional block that contains individual electronic elements and/or electronic packages to be used in a next-level assembly. An individual module may include an application-specific function or multiple electronic functions (e.g., optoelectronic, mechanical). The module typically provides protection of its elements and packages to ensure the required level of reliability.
- **1.6.7 Three-Dimensional (3D) Packaging** Three-dimensional (3D) integration of heterogeneous elements, using traditional interconnection processes, to achieve vertically configured interconnections.
- **1.7 Implementation Challenges** The next generation of 3D assembly has many implementation challenges, since the technology is complex and requires process expertise that may require foundries, outsourced semiconductor assembly and test (OSAT) providers and original design manufacturers (ODMs). There is no clear direction where 3D packages will be built, tested and assembled. The type of process to be used and the order of assembly and stacking is not defined and depends on the assembler's expertise.

Figure 1-1 illustrates the technological complexity of 3D assembly.

As mobile electronics markets continue to see significant growth, there will be an increasing demand for product miniaturization and higher product performance expectation. Developers of personal communication and computing products, for example, have already adopted multicore processors. Furthermore, these high-performance processors will require greater memory bandwidth. To meet these market trends, manufacturers are predicting faster process capability and anticipate reduced power requirements to extend battery life. Next-generation semiconductor package solutions also are projected to be physically robust. While materials for organic-substrate-based applications will meet most commercial applications, more severe operating environments may require a more robust (nonorganic) base substrate material.

Industry may continue to rely on organic-based platforms for a majority of semiconductor packaging applications. When

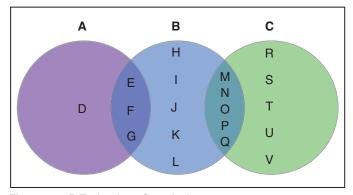


Figure 1-1 3D Technology Complexity

- A Foundry
- B Outsourced semiconductor assembly and test (OSAT)
- C Original design manufacturer (ODM)
- D Wafer process
- E Wafer test known good die (KGD)
- Through-silicon via (TSV) interposer
- G Micro bumping
- H Package assembly
- I Wire bond
- Wafer-level packaging (WLP)
- K Package mold
- L Wafer bumping M – Package bumping
- N Die attach
- O 2.5D assembly
- P Underfill
- Q Prestacked
- R Printed board assembly
- S Package-on-package (PoP) assembly
- T Rework
- U Corner glue
- V System test