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Design and Assembly Process Guidance for Bottom Termination 
Components (BTCs)

1  SCOPE

This document describes design and assembly guidance for implementing bottom termination components (BTCs). The focus 
of the information contained herein is on critical design, materials, assembly, inspection, repair, quality and reliability issues 
associated with BTCs.
This document applies only to BTCs, which are components with planar terminations under the body with or without wettable 
side terminations or flanks. Examples of BTCs include small‑outline no‑lead (SON), dual‑flat no‑lead (DFN), quad‑flat no‑lead 
(QFN), land grid array (LGA), etc. (see Section 4).

1.1  Purpose  The purpose of this document is to provide useful and practical information to those who use or are considering 
using BTCs. The target audiences for this document are physical designers, process engineers, reliability engineers and 
managers who are responsible for design, assembly, inspection 
and repair processes of printed boards and printed board 
assemblies. Information described in this document enables 
high quality and highly reliable BTC assembled devices 
operating within an electronic system.
This document also describes how to successfully implement 
robust design and assembly processes for printed board 
assemblies using BTCs as well as ways to troubleshoot some 
common anomalies which can occur during BTC assembly. For 
accept/reject criteria and requirements for BTC assemblies, see 
J‑STD‑001 and IPC‑A‑610.
Figure 1‑1 provides an example of various forms of BTCs.

1.2  Classification

CLASS 1  General Electronic Products

Includes products suitable for applications where the major requirement is function of the completed assembly.

CLASS 2  Dedicated Service Electronic Products

Includes products where continued performance and extended life is required, and for which uninterrupted service is desired 
but not critical. Typically, the end‑use environment would not cause failures.

CLASS 3  High Performance/Harsh Environment Electronic Products

Includes products where continued high performance or performance‑on‑demand is critical, equipment downtime cannot be 
tolerated, end‑use environment may be uncommonly harsh, and the equipment must function when required, such as life support 
or other critical systems.

1.3  Measurement Units  This document uses International System of Units (SI units) per IEEE/ASTM SI 10, Section 3. The 
SI units used in this document are millimeters (mm) for dimensions and dimensional tolerances, Celsius (°C) for temperature 
and temperature tolerances, grams (g) for weight, and lux (lx) for illuminance.
Note: This document uses other SI prefixes (ASTM SI10, Section 3.2) to eliminate leading zeroes (for example, 0.0012 mm 
becomes 1.2 μm) or as an alternative to powers‑of‑ten (3.6 x 103 mm becomes 3.6 m).

1.4  Use of ‘‘Lead’’  For readability and translation, this document uses the word lead only to describe leads of a component 
(sometimes referred to as terminations).

1.5  Abbreviations and Acronyms  Periodic table elements are written in their abbreviated form only in this document. See 
Appendix A for full spellings of these and other abbreviations and all acronyms used in this document.

1.6 Terms and Definitions  Other than those terms listed below, the definitions of terms used in this document are in accordance 
with IPC‑T‑50.

1.6.1 Wettable Side Flank  A BTC peripheral termination that is partially plated to improve solderability.

Figure 1‑1 Various Forms of BTCs
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	4.2.3.3 Small Outline No‑Lead (SON) / Quad Flat No‑Lead (QFN) Terminal Spacing and Dimensions In Figure 4‑11, the b dimension represents the width of the metallized terminals (including lead finish) exposed at the bottom surface of the package. The termin
	4.2.4 Punch‑Singulated Fine Pitch Square Very Thin and Ultra‑Thin Profile Lead‑Frame‑Based Quad No‑Lead Staggered Dual‑Row Packages JEP 95, Section 4.23 applies to punch‑singulated, fine‑pitch, square, very thin and ultra‑thin profile lead‑frame‑based, qu
	4.2.5 Quad No‑Lead Staggered and In‑Line Multiple‑Row Packages JEP 95, Section 4.19 defines this package family as a plastic quad no‑lead (QFN) having staggered or in‑line multiple‑row terminals. Typical of the preceding package configurations, this QFN f

	4.3 Detailed Description of Quad Flat No‑Lead (QFN) and Small Outline No‑Lead (SON) / Dual Flat No‑Lead (DFN) Packages
	4.3.1 Manufacturing Methods Wire‑bond BTCs BTC package configurations are frequently used for individual semiconductor dies and less frequently to package multiple components (see Figure 4‑23).
	4.3.2 Manufacturing Methods – FC‑BTCs With reference to the package construction discussed in Section 4.3.1, a slightly different process flow is required for manufacturing a FC‑BTC, see Figure 4‑31.
	4.3.3 Manufacturing Methods – Etched Back BTCs To increase the I/O count of BTCs, multi‑row packages as double‑row QFNs can be employed. However, using conventional BTCs, dual‑row packages represent a practical limit. More design flexibility can be achiev
	4.3.2 Types of Defects The following are common defects that result from package fabrication methods:
	4.3.3 Marking Alternatives Common methods of marking BTC packages include:
	4.3.4 Materials Used Plating characteristics are an important part of the lead frame BTC construction. Attachment within the component package and with external terminations should be carefully addressed for the most robust joint structure.
	4.3.5 Solderability Testing Solderability testing of BTC components should be conducted in accordance with J‑STD‑002 and reflow processes (e.g., SnPb, Pb‑free or others).

	4.4 Custom Quad Flat No‑Lead (QFN) and Small Outline No‑Lead (SON) / Dual Flat No‑Lead (DFN) Packaging One feature of the lead‑frame‑based QFN family of BTCs is the relatively low cost and minimal time required to design and fabricate a custom version. Al
	4.5 Description of Commercial Variations Many detailed variations of QFN and SON (DFN) BTCs have been developed. These are now marketed under a broad number of trademarks and acronyms by various companies, a few of which are described in this section.
	4.5.1 Detailed Description of Micro Lead Frame (MLF), Micro Lead Package (MLP) and Micro Lead Frame Plastic (MLFP) Components
	4.5.1.1 Part Descriptions MLFs, MLPs and MLFPs are all near‑CSP‑size plastic‑encapsulated quad‑contact configured no‑lead (QFN) packages with a Cu lead frame substrate. This package family uses perimeter lands on the bottom of the package to provide elect
	4.5.1.2 Package Tolerances Dimensions and tolerances conform to ASME Y14.5, all dimensions are in mm and angles are in degrees. Figure 4‑41 represents the basic QFN package outline.
	4.5.1.3 Material Specification QFN packages are available in several alloy finishes: post‑plated SnPb, matte Sn, SnBi and preplated NiPd with Au flash. Studies on parts plated with NiPd and matte Sn have shown no significant difference compared to SnPb fi
	4.5.2 Detailed Description of Leadless Lead Frame Package (LLP) and Lead Frame Chip Scale Package (LFCSP) Components
	4.5.2.1 Part Description LLPs and LFCSPs are near‑chipscale plastic‑encapsulated wire‑bond QFN packages with a Cu lead frame substrate in a BTC package format.
	4.5.2.2 Package Tolerances The JEDEC design guideline for this package family applies to packages with optional thermal enhancements as well as various height profiles and pitches. This package has terminals on all four edges of the bottom surface of the 
	4.5.2.3 Material Specifications To comply with RoHS and the Waste Electrical and Electronic Equipment (WEEE) Directive, companies modified molding compounds and, in some cases, die‑attach materials. In addition, they converted mold compounds to more robus

	4.6 Land Grid Arrays (LGAs) LGAs typically consists of a substrate with metallized pads on the secondary side to make connection to the next‑level assembly. LGAs may consist of active and passive components, which are protected using either an over‑mold o
	4.6.1 Land Grid Array (LGA) Construction LGAs are available in sizes comparable to those in JEDEC standards. LGAs are typically larger than 3 mm x 3 mm and can be built using a double‑sided or multilayer substrate. Many laminate‑based LGAs include multipl
	4.6.2 Manufacturing Methods for Substrate‑Based LGAs This section provides more detail on some of the main areas that make up the construction of the LGA as shown in the process flows and construction variables options in 4.6 and 4.6.1.
	4.6.2.1 Substrate Construction Substrate‑based packages are similar to lead‑frame‑based packages in many ways. Many devices that can be packaged using the lead frame approach can also be packaged using a substrate. Due to cost and reliability, substrates 
	4.6.2.2 Sealing As described in 4.6, LGAs may be over‑molded or contain a lid which protects the components inside. A variety of molding compounds are used. The choice of molding depends not only on the part and components within the LGA, but the mold des
	4.6.2.3 Marking Alternatives Common methods of marking LGAs are:
	4.6.3 Types of Defects Some common defects associated with LGA assembly include:
	4.6.4 Assembly Challenges Mounting Land Grid Array (LGA) Packages When attaching an LGA, some of the same concerns should be addressed as compared to attaching a standard QFN or BGA device, with some added challenges. LGAs may be warped as received due to
	4.6.4.1 Solder Paste Selection As with soldering standard BTC components such as QFNs, flux can get trapped under the LGA device during solder attachment. Paste with a no clean flux should be used when attaching LGA devices to the next‑level assembly. The
	4.6.4.2 Solder Dispense / Stencil Printed When attaching the LGA to the next‑level assembly, solder deposited on the mating land can be dispensed or stencil printed. If a stencil is used, the typical thickness is 0.1 mm to 0.15 mm. The aperture design is 
	4.6.5 HDI Process As in the construction of the LGA, depending on the performance requirements of the LGA, an HDI process may be needed, which includes thermal plane structures on the mating printed board incorporating filled microvias and planarized surf


	5 PRINTED BOARDS AND OTHER MOUNTING STRUCTURES
	5.1 High‑Density Interconnect (HDI) Build‑Up Layers While singleand two‑metal‑layer boards are common, multilayer interconnection structures are commonly required to support the interconnection of BTCs for high‑performance electronics. High‑density routin
	5.2 Base Materials Considerations The base materials used to produce the mounting structure for the BTC assembly should meet the requirements of IPC‑4101. That standard provides specific details and dozens of technical specification sheets for ordering ba
	5.3 Moisture Absorption Most organic materials are hygroscopic to some degree and soak up moisture at different rates; some do so relatively rapidly. Moisture absorption changes electrical properties (e.g., loss tangent) and processing characteristics (e.
	5.4 Surface Finishes The primary purpose of a surface finish is to prevent oxidation of exposed Cu on the printed board. This ensures the surface is solderable when BTCs are mounted. Surface finishes should also provide a flat surface for solder paste pri
	5.4.1 Hot‑Air Solder Leveling (HASL) HASL uses a molten bath of solder (SnPb or Pb‑free) and hot‑air knives to apply solder to exposed printed board surfaces. HASL solder thickness varies widely from 0.8 µm to 0.38 µm. A low thickness is not acceptable be
	5.4.2 Organic Solderability Preservative (OSP) Coatings OSP is an antitarnish coating of an organic compound (e.g., a benzimidazole‑based compound) which is applied over exposed Cu surfaces to prevent oxidation. Various chemistries are available; common o
	5.4.3 Electroless Ni/Immersion Au (ENIG) ENIG is applied through the deposition of an initial layer of Ni followed by a thin, protective layer of Au onto the exposed Cu surfaces of a printed board. The thin layer of immersion Au preserves solderability by
	5.4.4 Electrolytic Ni/Electroplated Au (ENEG) ENEG is similar to ENIG; however, it results in a different grain structure. ENEG is applied after pattern plating and most often before solder mask; therefore, it carries some risk of surface contamination. S
	5.4.5 Electroless Ni/Electroless Pd/Immersion Au (ENEPIG) ENEPIG is similar to ENIG, except that a Pd layer is placed between the electroless Ni layer and the immersion Au layer. The Pd thickness should be 0.05 µm to 0.3 µm for optimum solder joint reliab
	5.4.6 Immersion Ag Immersion Ag is produced by selective displacement of Cu atoms with Ag atoms on the exposed metal (Cu) surface of the printed board. An organic substance is deposited as part of the process, which reduces the oxidation that would be exp
	5.4.7 Immersion Sn Immersion Sn utilizes a displacement reaction between the Cu surface and Sn ions in solution to reduce a layer of Sn onto the Cu surface of the printed board. An organic substance is deposited as part of the process that reduces the oxi
	5.4.8 Solid Solder Deposition Although not widely used, solid solder deposition (SSD) is a method for preloading the surface mount lands with all the solder needed—in a solid form—to complete the component attachment. SSD uses an adhesive flux coating to 

	5.5 Silk Screen Cross‑sectional thickness of silk screen can range from 20 µm to 25 µm as shown in Figure 5‑5. As previously mentioned, final collapse height of BTC devices range from 50 µm to 75 µm; nearly 40 % to 50 % of the collapse height. With this v
	5.6 Site Flatness, Bow and Twist The planarity of 1.5 mm, 2.25 mm and 3 mm thick boards varies, especially considering the ability to assemble BTC components. Flatness is measured in relationship to the length and width of the laminate or the complete pri

	6 PRINTED BOARD DESIGN CONSIDERATIONS
	6.1 Design for Assembly Considerations Decisions made during the design phase have direct effect on numerous aspects of the hardware assembly process. BTC designs should adhere to component supplier requirements, meet application‑specific electrical and m
	6.2 BTC Land Pattern Design Process Use the following process to help with the design of BTC packages onto a printed board assembly:
	6.3 Package Variations BTCs are available in various lead formats and package thicknesses. In general terms, the family of BTC components includes:
	6.4 BTC Land Pattern and Component Symbol Coding BTC land pattern guidance described in this section should complement rules for BTCs outlined in IPC‑7351. BTC layouts need to follow IPC‑2221 for minimum electrical conductor spacings.
	6.5 Circuit Routing Considerations / Thermal Via Keep‑Outs If thermal pads have been incorporated into the BTC printed board design, thermal vias may be present. Typically, thermal vias are through‑hole vias connecting multiple ground planes, acting as a 
	6.6 Important BTC Package Elements for Physical Design During physical design stages of product development, it is important to understand basic BTC construction options available from component suppliers. See Section 4 for elements important to physical 
	6.6.1 Termination Formats SON and QFN packages are available in pull‑back and no pull‑back I/O lead configurations (see Section 4). In the pull‑back configuration, the standard solder pads are typically offset from the edge of the package up to 0.15 mm (b
	6.7 BTC Land Patterns and Component Symbol Coding The first step in adding a BTC device to a printed board assembly is to identify the specific device(s) to be used within the design. A component print (also called a component outline drawing) should be o

	6.8 Solder Mask Design Solder mask is a thin polymer layer that is applied to cover Cu traces on a printed board for protection against oxidation and to prevent solder bridging between closely spaced component lands and vias. During thermal plane and I/O 
	6.8.1 Encroached Vias Encroached vias permit solder mask on the land without filling the plated through‑hole (PTH). Encroached vias take the primary solder mask opening and adjust it so it is slightly larger than the via hole size (typically 50 µm to 200 
	6.8.2 Solder Mask Design for I/O Cu Lands
	6.8.2.1 Solder Mask Defined (SMD) vs. Non‑Solder Mask Defined (NSMD) Land Definition Two types of land patterns are used for surface mount packages: NSMD and SMD. For SMD‑type land patterns, the solderable surface on the printed board is defined by the so
	6.8.2.2 Printed Board Manufacturer Solder Mask Alterations It is important to ensure printed board suppliers do not modify solder mask web designs per original design file artwork to accommodate internal board fabrication process capability. Figure 6‑12 s
	6.8.3 Solder Mask Design for Thermal Planes Solder mask design for thermal planes depends on the thermal plane design option adopted. See 6.11 for design‑specific details. In general, the basic NSMD and SMD design options, discussed in 6.8.2.1 for I/O Cu 
	6.8.4 Perimeter I/O Cu Land Design For additional information regarding Cu land design, refer to 6.10. If HDI (VIPPO) / stacked microvias are used within I/O pads refer to 6.9.
	6.8.4.1 Pad Formats on BTC Packages There are four different types of perimeter I/O pad configurations found on BTC packages. The list below includes packages with pull‑back and without pull‑back from the Cu lead frame. This section highlights the differe

	6.9 HDI Considerations While single‑ and two‑metal‑layer circuits are still common, multilayer interconnection structures are commonly required to support the interconnection of BTCs for high‑performance electronics. High‑density routing difficulties asso
	6.10 Cu Thermal Plane Design BTCs are often designed with an exposed die paddle on the bottom surface of the package to enhance thermal performance. However, to make use of the exposed die paddle for heat dissipation, the printed board design should have 
	6.10.1 Thermal Via Types The most basic thermal via is a PTH, in which the Cu barrel provides a pathway for conducting heat to inner layers and the bottom side of the printed board. Depending on the chosen land design for the exposed‑pad soldering area, c
	6.10.2 Key Thermal Plane Design Elements A key characteristic of BTC packages is the inclusion of a solderable die paddle found on the underside of the component directly under the silicon die (within the package). Generally, the size of the thermal plane
	6.10.3 Thermal Plane Via Counts and Arrangement To effectively transfer heat from the top metal layer of the printed board to the inner or bottom layers, thermal vias need to be incorporated into the thermal plane design. The number of thermal vias will d
	6.10.3.1 Thermal Via Patterns Thermal vias are vias intended to carry heat away from components to thermal plains within the printed board structure or to the opposite side of the printed board. They are commonly arranged within the Cu thermal plane on th
	6.10.3.2 Via Density and Thermal Resistance The diameter, number and type of thermal vias will depend on the application, power dissipation and electrical requirements. Increasing the number (density) of thermal vias decreases the mean thermal resistance 
	6.10.4 Thermal Via Standard Grids Placement of through‑hole thermal vias within a thermal pad area should follow standard grid patterns as shown in Figure 6‑25, either as orthogonal arrays or hexagonally close‑packed arrays. Placement of through‑hole ther
	6.10.5 Inadequate Via Quantity Inadequate thermal via quantity can significantly affect thermal transfer efficiency across the interconnect structure. When there are not enough vias furnished within the thermal plane area, heat transfer into subsurface gr

	6.11 Thermal Plane Design Options Regardless of the application, QFN packages should be designed with thermal and power dissipation requirements considered. Over‑powering or over‑heating a device can lead to internal package failure or downstream device e
	6.11.1 Solder Mask Defined (SMD) Thermal Plane Design A SMD thermal plane design point is similar to a floating mask thermal plane approach but includes additional solder mask trench features between thermal vias. By design, the SMD thermal plane approach
	6.11.1.1 Benefits There are several advantages to using this design approach including:
	6.11.1.2 Drawbacks It should be noted that there are some known drawbacks when using this approach:
	6.11.1.3 Implementation and Example Layouts The shape and number of solder windows using this design point depend on:
	6.11.2 Open‑Cu Thermal Plane Design For an open‑Cu thermal plane design, through‑hole vias are placed within the Cu thermal plane soldering area of the printed board (see Figure 6‑35). Thermal vias can be connected to internal grounding layers subsurface 
	6.11.2.1 Benefits There are two main benefits in selecting this design option:
	6.11.2.2 Drawbacks
	6.11.2.2.1 Solder Wicking In practice, when using an open‑Cu thermal plane design, printed solder paste, which cannot be accommodated within the stand‑off of the component on the exposed‑pad soldering area, may penetrate into open through‑hole vias (solde
	6.11.2.2.2 Solder Protrusions How solder protrusions (see Figure 6‑36 for an example) are formed is not fully understood. What is known is that they only occur for vias with at least a partial solder filling. The solder then is pushed out of the via due t
	6.11.2.3 Component Stand‑Off For this design option, component stand‑off will be determined by the components’ printed board coplanarity limit when a design avoiding solder wicking is adopted. It will be at the lowest physically possible limit. Because st
	6.11.2.4 Voiding In principle, open‑via structures provide an efficient path for outgassing (i.e., venting of gaseous species originating from flux). However, if via density is low and solder volume is high, elevated voiding level (e.g., > 30 % of soldere
	6.11.2.5 Rework Difficulties and Excessive Touch‑Up If BTCs using an open‑Cu thermal plane require rework, additional care and attention should be used. Removal of the defective device using a hot‑gas rework tool is easily accomplished; however, site clea
	6.11.2.6 Implementation and Example Layouts Since solder‑resist barriers are not required, this design option provides total freedom for placing vias. Usually, a regular and symmetric via arrangement is chosen, but this is not mandatory see 6.10.4).
	6.11.3 Via Tenting Thermal Plane Design For a design based on via tenting, through‑hole vias are placed within the Cu thermal plane soldering area of the printed board, which can be connected to subsurface internal grounding layers within the printed boar
	6.11.3.1 Benefits There are benefits to this design option. As the solder mask seals off the via from the solder volume at the exposed‑pad solder joint, any solder in the via can be reliably excluded. The application of dry‑film solder mask for via tentin
	6.11.3.2 Drawbacks
	6.11.3.2.1 Printed Board Reliability Via tenting can entrap printed board etch chemistry during the printed board laminate fabrication process and/or assembly chemistries (primarily flux leaching) during printed board assembly. Entrapped chemistry within 
	6.11.3.2.2 Solder Mask Adhesion This design option requires stable top‑mask adhesion to reliably separate solder from the vias. This is usually not a concern during up to three reflow cycles, but the adhesion may become critical during rework operations, 
	6.11.3.2.3 Voiding Compared with the open‑Cu thermal plane design option, tented via structures cannot provide a path for outgassing (i.e., venting of gaseous species originating from flux). If a high volume of solder is applied, excessive voiding levels 
	6.11.3.3 Implementation and Example Layouts For tented vias, secondary solder mask is applied locally by using a screen mesh. This secondary solder mask is a dry‑film solder mask with high solid (nonvolatile) content between 75 % and 90 %, which does not 
	6.11.4 Encroached Via Thermal Plane Design The concept of encroached vias permits solder mask being on the land without filling the plated through‑hole. Encroached vias take the primary solder mask opening and adjust it so it is slightly (typically, 50 µm
	6.11.5 Via‑in‑Pad Plated‑Over (VIPPO) Thermal Plane Design A VIPPO thermal plane design point incorporates VIPPO via structures within the BTC thermal pad. Because thermal vias are plated over with Cu, there is no risk of solder wicking using this design 
	6.11.5.1 Benefits There are several advantages to using this design approach including:
	6.11.5.2 Drawbacks It should be noted that there are some known drawbacks when using this approach:
	6.11.5.3 Implementation and Example Layouts
	6.11.6 Floating Mask Thermal Plane Design For a design based on floating solder mask, through‑hole vias are placed within the Cu thermal plane soldering area of the printed board, which can be connected to subsurface internal grounding layers within the p
	6.11.6.1 Benefits There are many benefits to this design approach.
	6.11.6.2 Drawbacks There are several known drawbacks to this design option.
	6.11.6.3 Stencil Design Solder stencil apertures should be designed to avoid floating solder mask locations and only deposit solder onto Cu areas within the thermal plane. Since the open‑Cu area can be quite large, the stencil design should incorporate mu
	6.11.6.4 Implementation and Example Layouts The solder mask ring around vias can be applied as primary solder mask, so no secondary solder mask deposition (like for the tented via option) is required. The solder‑resist barrier should have a width of at le

	6.12 Design for Cleaning Considerations There has been much debate about whether or not to clean flux residues from under BTCs. Low component stand‑off dimensions (typically ≤ 25 µm to 100 µm) after SMT reflow are of primary interest for BTC cleaning. The
	6.13 Stencil Design Considerations BTCs devices have two distinct areas that require solder paste printing to form an electrical connection between the component and the printed board. The following sections provide guidance for stencil design considerati
	6.13.1 Thermal Plane Stencil Design To effectively remove the heat from the package and to enhance package electrical performance, a BTC component die paddle should be soldered to the printed board using a Cu thermal plane. Not all BTC packages require th
	6.13.1.1 Stencil Aperture Design Options for Thermal Planes When designing stencil apertures to print Cu thermal planes, two different approaches can be used to attain proper solder paste coverage. Figure 6‑47 shows both options. The figure is not to scal
	6.13.1.2 Percentage Coverage Solder paste coverage can be calculated using two different bases. It can be based on the entire thermal pad area (see 6.13.1.2.1) or it can be based on an individual solderable area (see 6.13.1.2.2).
	6.13.1.2.1 Percentage Coverage Based on Thermal Plane Area - Thermal Plane Basis In this case, percentage coverage is calculated as a function of the base Cu thermal plane. The resulting solderable area is divided by the total available area as determined
	6.13.1.2.2 Percentage Coverage Based on Individual Solder Area - Solder Stencil Aperture Basis In this case, percentage coverage is calculated as a function of the area of a single wettable part of the thermal plane (i.e., an area not covered with solder 
	6.13.1.2.3 The solder coverage definition after completion of the soldering operation The solder coverage for a solder part is defined as the ratio of the overlapping area between parallel and wettable surface of printed board and component termination co
	6.13.2 Perimeter I/O Stencil Design Perimeter I/O stencil aperture openings should follow Cu dimensions as found on the printed board. Stencil design dimensions for I/O pads should be designed using BTC supplier part print requirements. Always consult the

	6.14 Stencil Aperture Reductions In some cases, aperture reductions from 1:1 Cu geometries may be required by the assembler to help with printing registration, solder slump or other assembly line needs. As shown in Figure 6‑53, such aperture reductions ar
	6.15 SMT Stencil Alterations Printed board Cu shapes should be designed with stencil aperture ratios in mind. SMT stencil aperture openings should be designed 1:1 with Cu thermal pad shapes and I/O pads. Figure 6‑54 shows an example of where significant S
	6.16 Important Considerations When Designing for BTCs Widespread use of BTCs has led to the identification of many issues to avoid when designing and manufacturing assemblies with these devices. See 6.16.1 and 6.16.2 for known issues to avoid.
	6.16.1 Ganged Solder Mask Openings on I/O Terminals Voltage regulation is a common application for BTC devices. Therefore, circuit designs often integrate surface power and ground shapes as shown in Figure 6‑11. If the component symbol is not designed to 
	6.16.2 Mirrored Quad Flat No‑Leads (QFN) Constructions Mirrored QFN constructions (see Figure 6‑55) are not recommended. Concerns with this design point include:

	6.17 Random Via Locations As described in 6.10.4, placement of through‑hole thermal vias within a thermal plane area should follow standard grid patterns. Random via locations within a thermal plane should be avoided. The image on the left in Figure 6‑26 

	7 ASSEMBLY OF BTCs ON PRINTED BOARDS
	7.1 BTC Component Considerations When setting up a robust SMT process with minimal defect rates and repeatable solder joint formation for attaching BTCs, the following component considerations are crucial.
	7.1.1 Incoming Packaging Formats Packaging for BTCs can be tape‑and‑reel or tray formats. Since machines can pick and place thousands of components per hour, the component‑delivery system should be capable of feeding parts at high speeds in a consistent o
	7.1.2 BTC Temperature Sensitivity Temperature‑sensitive component (TSC) scrubs should be conducted on an assembly BOM. If not managed properly, TSCs can pose significant reliability risks to hardware. If there is a TSC‑related problem, it usually shows up
	7.1.3 BTC Moisture Sensitivity Considerations BTCs shipped in moisture‑barrier bags require special handling to ensure proper surface mount conditions are met. The moisture‑barrier bag will be labeled with the proper instructions concerning the correct ha
	7.1.4 BTC Termination Finishes and Solderability Matte Sn is widely used as a Pb‑free finish for BTC component terminations. For Sn‑based finishes on Cu‑based lead frames, the risk of Sn whiskers may be introduced without implementation of proper risk mit

	7.2 Printed Board Considerations BTCs may be incorporated into rigid or flexible printed board designs. See Section 6 for details on printed board design for BTCs. This section focuses on assembly elements relating to BTC usage.
	7.2.1 Printed Board Design Impact on Solder Joint Fillet Formation As discussed in Section 6, proper land pattern design is critical for maintaining high yields and good reliability of BTC solder joints. Figure 7‑4 shows examples of good and bad BTC land 
	7.2.2 Assembly‑Induced Warpage Warpage is another consideration as BTCs become larger. Flatness is important for proper seating of the package and for solder joint reliability. The higher‑temperature reflow profile required for Pb‑free soldering may cause

	7.3 Assembly Materials There are many assembly materials to consider and qualify to ensure a robust BTC assembly process including:
	7.3.1 Solder Alloy Mounting Methods Soldering is the primary method to form BTC interconnects. Final solder joint volume after reflow comes from the amount of solder paste deposited onto SMT I/O and thermal lands. BTCs do not contribute any solder to the 
	7.3.2 Solder Paste BTCs are most often attached to a printed board using a solder paste printing process. Stencil apertures are designed based on the printed board Cu footprint and are used to print a controlled amount of solder paste to the target locati
	7.3.3 Solder Preforms Solder preforms can be used in cases in which additional solder volume may be required. For example, some BTCs contain outrigger pads, which are dual pads on the left and right sides of a device, as shown in Figure 7‑5. Preforms can 
	7.3.4 Solder Alloy Alloy selection for BTC devices should follow recommendations found in J‑STD‑006. In general, there are no special requirements for soldering BTCs, beyond regular assembly processing considerations for other components found on an assem
	7.3.5 Flux Chemistry Considerations Flux selection for BTC devices should follow recommendations in J‑STD‑004. Important decisions to consider during the selection process include:
	7.3.6 Edge/Corner Bond Materials, Underfills and Adhesives The use of underfills and additional adhesives should be thoroughly investigated before use with BTC assembly. Using solder mask in the printed board design may make the standoff distance between 

	7.4 BTC Cleaning Process BTCs are known to trap flux residues under the component. The thermal lug during reflow pulls the component down onto the pad area, which reduces the stand‑off gap. Common stand‑off gaps for these component types range from 25 µm 
	7.5 Solder Printing and Deposition Paste print quality is a critical factor in producing high‑yield, reliable assemblies that use BTCs. Solder paste can be applied to the lands using several methods including screen or stencil printing, dispensing or jett
	7.5.1 Solder Stencil Printing Considerations The following are key considerations to ensure an adequate BTC printing process (see also IPC‑7525 for stencil design best practices):
	7.5.2 Jetting and Dispensing Solder paste dispensing is not as widely used as printing due to a reduction in throughput speed; however, selective dispensing allows for more flexible paste volume deposition and placement for tighter process control. Solder
	7.5.3 Solder Dipping of BTC Components Component solder dipping is not recommended for BTC terminal surface preparation. Dip soldering will not maintain coplanarity and makes the BTC unproducible during assembly. Inconsistent solder on the thermal plane c

	7.6 Solder Paste Inspection As with other component print locations, it is important to inspect print quality of BTCs prior to placement and reflow. Reworking defect locations early is made easier if detected prior to creating the soldered interconnect. A
	7.7 Component Placement Pick‑and‑place accuracy governs package placement and rotational alignment. This is equipment and process dependent. Slightly misaligned parts (< 25 % off the land center) will automatically self‑align during reflow (see Figure 7‑1
	7.8 Solder Joint Reflow Reflow soldering is a complex process with many variables. All mass‑reflow systems incorporate convective, conductive and radiant means of heat transfer; to which degree depends on the design of the reflow system. As with all SMT c
	7.8.1 Reflow Atmosphere The reflow furnace atmosphere will affect solder wetting. Reflowing in a N2 environment will result in improved wetting of the solder joint. This will sometimes allow compensation for marginally wettable surfaces on printed boards 
	7.8.2 Time and Temperature Profiles Solder profile, also known as thermal profile, significantly impacts product yield. Conveyor speed and panel temperature are two variables in solder profile development. The solder profile is not only product specific; 
	7.8.3 Unique Profile for Each Printed Board Assembly Each unique printed board assembly needs to be profiled to prove all locations on the assembly meet the various requirements for creating acceptable solder joints. A single reflow program will produce v
	7.8.4 Effects of Materials on Flux Activation, Component Damage and Solderability A common mistake is to use a time and temperature profile that consumes the flux before the solder melts. Ideally, the flux will be consumed just as the solder begins to mel

	7.9 Thermal Profiling for BTCs With a limited number of thermocouple channels available with data recorders, it is important to include at least one BTC reference designator measurement (at a minimum) when defining the thermocouple mapping for a printed b
	7.10 Process Control and Monitoring Points for BTCs As discussed in this document, there are several key areas in which design point, process control and monitoring of BTCs is important to ensure high‑quality and high‑reliability implementation of BTCs on
	7.11 Production‑Level Inspection BTC inspection is typically accomplished using a combination of tests during manufacturing, including those found in Table 7‑4. Different test procedures and equipment within the manufacturing process flow are required to 
	7.11.1 Automated Solder Paste Inspection (SPI) SPI should be included as a first step to ensure high‑quality assembled BTC devices. Solder paste volume and height measurements should be taken for I/O perimeter lead locations as well as thermal pad deposit
	7.11.2 Automated Optical Inspection (AOI) In principle, AOI can be used to detect failures such as bridging, no‑solder joints and open solder joints (i.e., nonwetting of component termination) for single‑row BTC packages with no pull‑back pins, because th
	7.11.3 Automated X‑Ray Inspection (AXI) Inspection of a BTC on a printed board can be accomplished by using transmission type X‑ray equipment. In most cases, 100 % inspection is not performed. Typically, X‑ray inspection is used to establish process param
	7.11.4 Manual Visual Inspection Final workmanship and craftsmanship of the printed board assembly with BTCs should be conducted per IPC‑A‑610 as part of standard final visual inspection operations. Focus items to include in BTC inspection include identifi

	7.12 Rework This section discusses key considerations for reworking BTC devices. There are several different methods to rework BTC devices, including hot air/gas rework, hot air pencil rework, and focused infrared (IR) rework systems. See IPC‑7711/21 for 
	7.12.1 Hot‑Air/GasRework and Hot Air Pencil Rework The most used and preferred in volume manufacturing is the automated hot air/gas rework process. This process consists of two steps, where the hot air/gas is used to accomplish a localized reflow of a BTC
	7.12.1.1 Thermal profile for rework Thermal profile for rework in 7.12.1 step 7 using hot‑gas or IR rework systems is typically categorized into four stages; pre‑heat, soak, reflow, and cool down, but depending on the application, additional stages can be
	7.12.2 Focused Infrared (IR) Rework The focused IR rework system delivers localized heating in the area of the directed laser beam. A focused IR rework system has the advantage in that it does not heat neighboring components, as would be the case when usi
	7.12.3 Solder Bumping Some BTC component packaging styles are more prone to having unsoldered pads in both SMT assembly and rework processes. The most problematic packaging styles tend to not be coplanar, meaning the dielectric is higher than the componen
	7.12.4 I/O Lead Manual Touch‑Up Touch‑up of BTCs using a hand soldering iron is not recommended. Since BTCs often do not have wettable side flanks for I/O pins, attempting to touch‑up the device with additional solder (using cored wire or wire and liquid 
	7.12.5 Rework Cleanliness Cleanliness of reworked BTCs is a critical factor in establishing a qualified manufacturing process according to J‑STD‑001 (see also IPC‑WP‑019). Possible testing methods that can be used for gathering objective evidence include 
	7.12.3 I/O Lead Manual Touch‑Up Touch‑up of BTCs using a hand soldering iron is not recommended. Since BTCs often do not have wettable side flanks for I/O pins, attempting to touch‑up the device with additional solder (using cored wire or wire and liquid 

	7.13 Conformal Coating of BTCs Conformal coatings protect parts from surface moisture and corrosion. Conformal coatings should be specified to meet the requirements of IPC‑CC‑830 and should be specified on the master assembly drawing. The designer should 
	7.14 Mechanical Heat Sink Usage By design, BTCs are connected to inner‑layer printed board ground planes that help to heat‑sink the device as it heats up during operation, so mechanical heat sinks on top of BTCs is generally not required. Studies conducte
	7.15 Production‑Level Testing
	7.15.1 Electrical Testing Electrical testing is used to evaluate the functionality of the printed board assembly. Commonly used electrical test approaches are probe testing, flying probe, in‑circuit test (ICT) and functional test (FT).
	7.15.2 Functional Test (FT) Coverage Given the current complexity in electronic assemblies, the level of coverage of test has become an industry issue. The more complex a printed board or printed board assembly, the more difficult it is to fully test. It 
	7.15.3 Burn‑In Testing Burn‑in testing is an operational and environmental test of the complete printed board assembly at the upper limits of the application. This test typically finds more component‑related problems than solder joint defects. Burn‑in tes
	7.15.4 Product Screening Tests Environmental stress screening (ESS) is used during ongoing production for poor product quality and latent defects. ESS accelerates the latent defects to actual failures, eliminating these latent defects from causing failure


	8 RELIABILITY CONSIDERATIONS FOR BTCs
	8.1 Introduction and Reliability Fundamentals of BTCs The following items should be distinguished regarding reliability of BTCs:
	8.1.1 Mechanical Reliability Mechanical reliability covers mechanical loads induced by mechanical shock or vibration due to field use or accelerated lifetime testing. BTCs are small to medium‑size components (typically, < 15 mm x 15 mm) with limited heigh
	8.1.2 Thermomechanical Reliability Thermomechanical reliability covers thermomechanical loads induced by temperature variations due to field use, air temperature cycling, highly‑accelerated life‑time testing, etc. BTCs consist mainly of a lead frame, mold
	8.1.3 Electrochemical Reliability Electrochemical reliability covers humidity, which can result in electrochemical migration phenomena between I/O solder joints and/or between I/O solder joints and the exposed‑pad solder joint(s) induced by the simultaneo

	8.2 Designing for BTC Reliability – Thermomechanical Loads
	8.2.1 Printed Board Design Considerations Printed board design is generally not driven by BTCs on the board, because their I/O count is limited. Because of this, BTCs generally need to adapt to the board technology prescribed by the overall assembly. The 
	8.2.2 Printed Board Thickness Thinner printed boards result in better board‑level reliability. FR‑4 (~17 ppm/°C) has a larger CTE than the package mold compound (~10 ppm/°C). Thinner printed boards also reduce cyclic strains due to the global CTE mismatch
	8.2.3 Wettable Side Flank Effect on Reliability The post‑package assembly singulation process (sawing or punching the individual devices from the processed lead frame strip) typically leaves a bare Cu lead frame at the singulation edge. Because bare Cu re
	8.2.4 Land Size and Pitch Another influence on reliability is the geometry of the solder joint derived from the land metallization on the printed board. Since BTCs are leadless devices, solder joint shape relates to the land. A larger land under a BTC pac
	8.2.5 BTC Package Stand‑Off Package stand‑off is a parameter that affects the reliability of BTC solder joints. Package stand‑off for a BTC is defined as the distance between the land on the bottom of the package substrate and the land on the printed boar
	8.2.6 Benefits of Reinforcement BTC underfill can substantially enhance fatigue life. When underfill is applied correctly, it reduces the solder joint strain level by constraining the expansion of the BTC interconnect to be used in a wider range of enviro
	8.2.7 Mold Compound Material Mold compound selection has an impact on package reliability. Selection of mold material should be based on meeting both package reliability requirements (e.g., moisture sensitivity level) and board‑level reliability. Board‑le
	8.2.8 Die Size Die size has a significant effect on board‑level reliability. As the die‑to‑package ratio decreases, board‑level reliability increases. With smaller die, board‑level reliability is better because the die edge, which has a low CTE, is farthe
	8.2.9 Solder Joint Microstructure Embrittlement The solder joint stand‑off of BTCs, compared to BGAs, is very small. This results in the potential issue of solder joint embrittlement due to interactions with noble metal surface finishes. The elements Au, 

	8.3 Designing for BTC Reliability – Electrical and Thermal Loads
	8.3.1 Voiding in Solder Joints at Thermal Pads Voiding in BTC thermal pad solder joints can have significant effects on the thermal dissipation and/or electrical grounding functionality of BTC components. Because the typical BTC package incorporates a lar
	8.3.2 Voids in I/O solder joints Generally, voiding levels in I/O solder joints are lower than voiding levels in solder joints at thermal pads and are typically not a concern for the electrical (and thermal) function of the solder joints. For examples of 

	8.4 Reliability Testing
	8.4.1 Time Zero Assembly Analysis by Endoscopy Endoscopy is an optical inspection method that permits visual inspection of tiny objects in a small, confined area. This technology has been adapted and applied to BTC solder joint inspection. Adding localize
	8.4.2 Accelerated Life Testing for Thermomechanical Reliability Testing lifetime expectations of components under actual use conditions would take as long as the design life of the component. For this reason, packages are tested by accelerating the therma
	8.4.2.1 Nondestructive Test Methods In nondestructive testing, the integrity of solder joints can be assessed by monitoring their electrical function. This can be done on the level of test boards, if appropriate BTCs with an internal daisy‑chain wiring ar
	8.4.2.2 Destructive Methods If nondestructive methods are not applicable or such methods used to identify a malfunction do not elicit the cause of failure, destructive analysis techniques may be used. Such techniques will render the analyzed assembly unus
	8.4.2.2.1 Cross‑Sectioning Cross‑sectioning is one method traditionally used for failure analysis. It enables an operator to analyze a specific section of a component, substrate and solder joint.
	8.4.2.2.2 Dye Penetrant Dye penetrant methods can be used during process setup and in failure analysis to detect solder joint cracking, wetting problems and package delamination. In this process, the sample is immersed in a low‑viscosity liquid dye which 
	8.4.3 Accelerated Lifetime Testing for Reliability Under Damp Heat Due to the boundary conditions for BTCs relative to potential entrapment of flux residues (see 7.4), thorough reliability testing under damp‑heat conditions is advisable for all mission‑cr
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