Engineered Cleaning Fluid and Mechanical Impingement Optimization Innovations

IPC Midwest Conference Mike Bixenman, Kyzen Corporation 9-26-07

Electronic Interconnections Technology Trends

Situational Analysis

- Electronic interconnection industry experiencing rapid innovation to meet the
 - demand for greater functionality and performance
 - challenge of miniaturization and advanced designs
 - Never ending pressure for reduced cost
- Drivers for interconnection technology
 - Enhanced "System on a Chip" packaging
 - Higher Density
 - Better Reliability

Needs Assessment

- Do products or processes need improvement to maintain market share?
- Do technologies exist to meet the needs of each level of the pyramid?
- What advancements or investments are needed to accomplish defined roadmap goals?

What is driving cleaning technology development?

Harsh Environments

- Automotive under the hood
- Military
- Avionics Electronics

Cleaning is a reliability driver

Mid Range Performance Electronics

- High end personal computers
- High end games
- Networking telecommunications

Advanced packaging drives the need to clean

High Performance Systems

- Mainframe
- Server
- Mass Storage
- RF
- Microwave

Bandwidth and signal impedance drive the need to clean.

Hand Helds

- Cellular phones
- Sub-notebooks
- PDAs
- Hand held game

System in package driving the need to clean exacerbated by Pb-free marketing programs.

Failure Avoidance

This is why we are here today

Failures are bad and cleaning can help prevent failure at a systemic level

Cleaning equates to Customer Value

- Cleaning is a key part of the solution for each of these challenges
- They all share the need for:
 - Increased miniaturization
 - Higher processing speeds
 - High frequency
 - Lower cost, better yields

"A reliable assembly, from a robust manufacturing environment"

Electronic Interconnection Cleaning Technology

Cleaning Challenges have Evolved

- Cleaning is increasingly more difficult due to:
 - Convergence of circuit board and advanced packaging technologies
 - Highly dense assemblies
 - Low standoffs
 - Pb-free flux is harder to clean

Flux Residue

Difficult Cleaning Challenges

- Leadless chip carriers
- Flush mounted chip caps
- Area array components
- Capillary action and surface tension fill the underside of the components flux residue

Problem Definition

- Average spacing under one of these devices is approximately 2-4 mils
 Chip caps can be a low as 1 mil
- To clean under these components
 - Static and dynamic cleaning rates must
 - Break the flux dam
 - Impinge the leading edge with pressure and flow
 - Cleaning fluid that rapidly dissolves the residue
- Drivers for removing all flux residues
 - Cleaning fluid
 - Wash time
 - Wash temperature
 - Pressure, flow, and directional forces

Approach to Solving Unmet Cleaning Needs

Optimizing the Cleaning Process

- Requires an understanding of ...
 - Upstream considerations
 - Static driving forces
 - Mechanical driving forces
- As the component gap reduces
 - Cleaning becomes more difficult

Process Optimization

IDEAL FUNCTION DIAGRAM WASH PROCESS

(Bixenman, Gervascio, Lasky, 2007)

Upstream Considerations

- Cleaning fluid must be designed
 - Around equipment types
 - For the soil
 - For the application
- Electronic cleaning needs
 - Rapid removal of soil
 - Low surface tension/wetting
 - Repeatability
 - Controllable
- Cleaning equipment
 - Building blocks must be matched to the specific cleaning requirement

Influential Variables

- Many variables influence the process cleaning rate
 - Substrate
 - Contaminant
 - Wash Temperature
 - Wash time
 - Cleaning fluid
 - Mechanical impingement
 - Surface tension (capillary action)

White Residue

Cleaning Fluid Building Blocks

- Engineered aqueous materials that consist of:
 - solvating materials
 - dissolve resins, rosin and polymeric structures
 - wetting materials
 - reduce wash chemistry surface energy and droplet size
 - activators
 - rapidly softens resins, which allows dissolution in the wash media
 - minor ingredients
 - inhibition to prevent oxidation
 - destabilizing foam

Cleaning Fluid Goals

- Built on the principle of lean technology
- Product improvements are built from
 - Improved solvency to remove flux soils
 - Operate at lower concentrations \sim 5-15% range
 - Operate at lower wash temperatures \sim 110 -150°F
 - Operational consistency
 - Long bath life
 - No foam
 - Controllable
 - Environmental improvements
 - Compatibility improvements

Rate Theory

"The over-all process cleaning rate is sum of the static rate plus the dynamic rate"

Static Rate = Rate at which process will proceed on its own Dynamic Rate = Rate increase attributable to machine

Stach, Bixenman (2005)

Cleaning Rate Theory Details

Temperature

- Chemical Driving Forces
 - Dissolution rate
 - Temperature
 - Time
 - Cleaning fluid concentration
 - Surface Tension
 - Wetting
- Mechanical Driving Forces
 - Flow
 - Impingement
 - Direction
 - Fluid Pattern

Fluid Dynamics

Process Implications of the Cleaning Rate Theory

- Concentration of the cleaning fluid
 - Higher concentration tends to improve cleaning performance
- Temperature
 - Solder flux tends to remove better at 130-160°F range
- Time
 - Longer time improve cleaning \sim especially under low standoffs
- Impingement
 - Combination of soak, flow and high pressure improve cleaning

Low Stand Offs: Complicate the Theory

- Rate theory fails to apply in all cases, specifically where penetration is required to reach the soil.
- The cleaning fluid must get to the soil before the cleaning fluid will dissolve or react

Methodology

- Static cleaning rate
 - SMTA Saber Board
 - Residue removal around fine pitch components
 - Factorial Design
 - Batch dishwasher style cleaning machine with low impinging forces
- Dynamic cleaning rate
 - Selection of cleaning fluid that provides highest static cleaning rate
 - Evaluate the design and layout of nozzles
 - Nozzle types for penetrating under low standoff components
 - Time under manifold to clean under low standoff components
 - Optimization of nozzles to facilitate cleaning under low standoff components

Static Cleaning Rate

Test Vehicle

Factors

Factor Description	Level 1	Level 2 High Thermal Load	
Reflow Profile	Low Thermal Load		
Number of Reflows	1	2	
Cleaning Residence Time	8 min	16 min	
Cleaning Chemistry	Chemistry 1 @ 13% & 125F based on pre- test findings	Chemistry 2 @ 20% & 150F based on pre- test findings	

Run	Reflow Profile	No of Reflows	Cleaning Time	Wash Temp.	Conc.	Chemical
1	Low	1	8	125°F	13%	Chemistry 1
2	High	1	8	125°F	13%	Chemistry 1
3	Low	2	8	125°F	13%	Chemistry 1
4	High	2	8	125°F	13%	Chemistry 1
5	Low	1	16	125°F	13%	Chemistry 1
6	High	1	16	125°F	13%	Chemistry 1
7	Low	2	16	125°F	13%	Chemistry 1
8	High	2	16	125°F	13%	Chemistry 1
9	Low	1	8	150°F	20%	Chemistry 2
10	High	1	8	150°F	20%	Chemistry 2
11	Low	2	8	150°F	20%	Chemistry 2
12	High	2	8	150°F	20%	Chemistry 2
13	Low	1	16	150°F	20%	Chemistry 2
14	High	1	16	150°F	20%	Chemistry 2
15	Low	2	16	150°F	20%	Chemistry 2
16	High	2	16	150°F	20%	Chemistry 2

Responses

- The responses measured were visual examination of flux residues after reflow and cleaning processes. Printed circuit assembly was inspected around the QFP component. Two orientations were inspected and graded on a 1-10 scale.
- A "1" designated that no flux was removed. A "10" designated that 100% of flux residue was removed. Inspection was conducted under 10X magnification. On set of leads inspected was 90 degrees rotated from first set of leads.

Chemistry 1

- Low Reflow Profile (Peak 230°C)
- One reflow exposure
- 8 minute wash time, 125°F, 13%

Chemistry 1

- High reflow profile (Peak 250°C)
- One reflow exposure
- 8 minute wash time, 125°F, 13%

Chemistry 1

- Low Reflow Profile (Peak 230°C)
- Two reflows exposure
- 8 minute wash time, 125°F, 13%

- High Reflow Profile (Peak 250°C)
- Two reflows exposure
- 8 minute wash time, 125°F, 13%

- Low Reflow Profile (Peak 230°C)
- One reflow exposure
- 16 minute wash time, 125°F, 13%

- High reflow profile (Peak 250°C)
- One reflow exposure
- 16 minute wash time, 125°F, 13%

- Low Reflow Profile (Peak 230°C)
- Two reflows exposure
- 16 minute wash time, 125°F, 13%

- High Reflow Profile (Peak 250°C)
- Two reflows exposure
- 16 minute wash time, 125°F, 13%

- Low Reflow Profile (Peak 230°C)
- One reflow exposure
- 8 minute wash time, 150°F, 20%

- High reflow profile (Peak 250°C)
- One reflow exposure
- 8 minute wash time, 150°F, 20%

- Low Reflow Profile (Peak 230°C)
- Two reflows exposure
- 8 minute wash time, 150°F, 20%

- High Reflow Profile (Peak 250°C)
- Two reflows exposure
- 8 minute wash time, 150°F, 20%

- Low Reflow Profile (Peak 230°C)
- One reflow exposure
- 16 minute wash time, 150°F, 20%

- High reflow profile (Peak 250°C)
- One reflow exposure
- 16 minute wash time, 150°F, 20%

- Low Reflow Profile (Peak 230°C)
- Two reflows exposure
- 16 minute wash time, 150°F, 20%

- High Reflow Profile (Peak 250°C)
- Two reflows exposure
- 16 minute wash time, 150°F, 20%

Outcome Table

Run		QFP 90 Visual Exam
	(1-10)	(1-10)
1	1	1
2	1	1
3	2	1
4	2	1
5	2	1
6	3	1
7	2	3
3	2	2
)	7	5
10	9	8
11	9	8
12	7	7
13	10	9
14	10	10
15	10	10
16	10	10

Dynamic Cleaning Rate

Cleaning Analysis Recording Lab

- Visual evidence of the influence of
 - Cleaning fluid
 - Wash temperature
 - Wash time
 - Nozzle types
 - Spray pressure
 - Movement variations

Data Capture

Test Vehicle

- Glass substrates prepared
 - Slides were bumped with epoxy
 - -75 mm pitch
 - 900 I/O
 - Die size 25mm x 25mm
 - Alpha 615-50
 - Reflowed with Pb-free profile
 - Peak reflow temp $278^{\circ}C$

				Seconde				
PWI= 606%	Max Risi	ing Slope	Soak Tim	e 150-170C	Reflow Ti	me /183C	Peak Temp	
3	1.8	152%	22.1	-26%	168.5	362%	276.2	\$82%
4	1.8	161%	21.9	-27%	170.5	360%	278.6	606%
5	1.8	152%	23.1	-23%	164.9	350%	272.8	548%
Delta	0.0		1.1		5.7		5.8	-

Factorial Design

Nozzle	Pressure	Wash Temperature	Visual Image Before Cleaning	Time in seconds	Time in seconds	Time in seconds	Time in seconds
1	1	150°F	BC	15	30	45	60
1	2	150°F	BC	15	30	45	60
2	1	150°F	BC	15	30	45	60
2	2	150°F	BC	15	30	45	60
3	1	150°F	BC	15	30	45	60
3	2	150°F	BC	15	30	45	60
4	1	150°F	BC	15	30	45	60
4	2	150°F	BC	15	30	45	60
5	1	150°F	BC	15	30	45	60
5	2	150°F	BC	15	30	45	60
6	1	150°F	BC	15	30	45	60
6	2	150°F	BC	15	30	45	60

Nozzle	Before Cleaning	15 seconds	30 seconds	45 seconds	1 minute
Nozzle 1 Pressure 1					
Nozzle 1 Pressure 2					

Nozzle	Before Cleaning	15 seconds	30 seconds	45 seconds	1 minute
Nozzle 1 Pressure 1					
Nozzle 1 Pressure 2					

Nozzle	Before Cleaning	15 seconds	30 seconds	45 seconds	1 minute
Nozzle 1 Pressure 1					
Nozzle 1 Pressure 2					

Nozzle	Before Cleaning	15 seconds	30 seconds	45 seconds	1 minute
Nozzle 1 Pressure 1					
Nozzle 1 Pressure 2					

Nozzle	Before Cleaning	15 seconds	30 seconds	45 seconds	1 minute
Nozzle 1 Pressure 1					
Nozzle 1 Pressure 2					

Nozzle	Before Cleaning	15 seconds	30 seconds	45 seconds	1 minute
Nozzle 1 Pressure 1					
Nozzle 1 Pressure 2					

Impingement Data Findings

- Three variables influence the cleaning rate
 - Nozzle selection
 - Flow
 - Pressure
- Focal point at the center
 - Fastest cleaning rate
 - Distance from focal point cleaning drops off

Optimization

- Step 1: Upstream process conditions
 - Substrate, contaminate, reflow
- Step 2: Static cleaning rate
 - Rate of solubility in the absence of strong impingement forces
- Step 3: Dynamic cleaning rate
 - Fluid flow, pressure, and directional forces
- Process cleaning rate = static rate + dynamic rate

Validation

Cleanliness & Electrical Performance

- Concoat Test Board
- Ion Chromatography: IPC-TM-650
 - -4 test boards
- Surface Insulation Resistance: IPC-TM-650

IC Data Findings

Table #1: PAL Recommended Cleanliness Guidelines

PAL's Recommended Cleanliness Guidelines									
Condition CI Br NO3 PO4 SO4 Organic Acids									
Bare Board (Cold plating)	< 1.0	< 12.0	< 3-5.0	PI	< 3-5.0	PI			
Bare Board (HASL)	< 2.0	< 12.0	< 3-5.0	PI	< 3-5.0	PI			
Assembly (No clean)	< 2.5	< 12.0	< 3-5.0	PI	< 3-5.0	20-50.0			
Assembly (Water-soluble / RMA)	< 4-5.0	< 12.0	< 3-5.0	PI	< 3-5.0	20-50.0			

Table #1: All values reported in $\mu g/in^2$. Cold plating refers to immersion Ag, immersion Sn, and ENIG. PI indicates that the component is treated as a process indicator as there are no industry guidelines currently available.

Ion Chromatography Data:

Sample	Sample	Extract	Area	Dilution	Chloride	Bromide	Nitrate	Phosphate	Sulfate	Organic
Number	Description	Vol (mL)	(in ²)	Factor	CI	Br	NO3	PO4	SO4	Acid
Blank	Kapak 502	10.00	72.00	0.14	ND	ND	ND	ND	0.06	ND
3106-009-01	Control	20.00	31.31	0.64	2.31	1.32	0.15	ND	ND	1.85
3106-009-02	Brd #1	20.00	31.31	0.64	1.37	1.04	0.14	ND	ND	1.03
3106-009-03	Brd #2	20.00	31.31	0.64	1.19	0.92	0.14	ND	ND	1.28
3106-009-04	Brd #3	20.00	31.31	0.64	1.26	1.00	0.13	ND	ND	1.06

Table #2: Numerical Anion Chromatography Data

Table #2: All ion values reported in the table are in $\mu g/in^2$. ND = None Detected. All bag blank contaminants have been subtracted from the sample amounts.

IC Data Conclusion

- All boards showed very low levels of ionic contamination
- The cleaned samples showed consistently lower amounts
 - Chloride
 - Bromide
- Nitrate levels were unremarkable and not of any concern
- Organic acid showed slight improvements compared to control board

SIR Patterns

SIR Data Findings

			Resistance F	Readings (Oh	ms)	
Sample ID	Pattern	Initials	24 Hours	96 Hours	168 Hours	Finals
	Pattern	5/22/2007	5/23/2007	5/26/2007	5/29/2007	5/29/2007
	1	4.13E+10	1.78E+07	1.39E+08	1.49E+08	1.18E+09
Control	2	1.73E+12	2.44E+08	4.76E+08	4.00E+08	1.03E+12
Control	3	1.56E+09	6.71E+07	5.62E+07	3.73E+07	8.62E+10
	4	1.24E+12	1.54E+08	2.56E+08	2.78E+08	4.44E+12
	1	9.99E+11	5.00E+08	6.28E+08	6.16E+08	1.60E+12
Cleaned	2	4.16E+12	3.89E+09	1.81E+09	1.27E+09	2.22E+12
Brd #1	3	3.53E+10	5.00E+08	6.16E+08	6.69E+08	1.09E+11
	4	3.02E+12	3.44E+09	1.52E+09	1.30E+09	1.76E+12
	1	1.74E+12	3.33E+08	5.26E+08	5.96E+08	4.35E+11
Cleaned	2	1.17E+13	3.02E+09	1.67E+09	1.35E+09	1.62E+12
Brd #2	3	4.67E+10	2.56E+08	4.76E+08	5.26E+08	1.61E+11
	4	4.94E+12	2.90E+09	1.41E+09	1.14E+09	1.18E+12
	1	6.47E+12	4.17E+08	6.15E+08	6.44E+08	1.32E+12
Cleaned	2	1.08E+13	2.91E+09	1.64E+09	1.26E+09	3.66E+12
Brd #3	3	3.65E+10	3.57E+08	6.08E+08	6.45E+08	1.64E+11
	4	9.77E+12	2.60E+09	1.43E+09	1.22E+09	2.50E+12
	1	2.45E+12	3.57E+08	6.28E+08	7.11E+08	2.05E+12
Cleaned	2	4.98E+12	3.76E+09	2.07E+09	1.52E+09	2.10E+12
Brd #4	3	3.48E+10	3.13E+08	5.26E+08	6.64E+08	1.54E+11
	4	2.26E+12	2.60E+09	1.76E+09	1.43E+09	1.80E+12
	1	1.64E+12	2.86E+08	4.35E+08	4.55E+08	4.76E+11
Cleaned	2	2.61E+12	2.33E+09	1.35E+09	1.09E+09	1.99E+12
Brd #5	3	3.70E+10	3.33E+08	5.26E+08	5.56E+08	1.75E+11
	4	3.08E+12	2.27E+09	1.27E+09	1.08E+09	2.02E+12

SIR Data Conclusion

- Initial measures verify test boards are returning good readings
- 24 hour results are expected to drop as boards acclimate to environmental conditions
- 96 hour cleaned boards showed slight improvement and were above the pass limit
- 168 hour cleaned boards maintained and were passing
- All cleaned boards returned high readings and passed.

Conclusion

- Cleaning process optimization requires an understanding of
 - Upstream processing conditions
 - Static cleaning rate
 - Dynamic cleaning rate
- Improved cleaning fluids
 - Higher static cleaning rate
 - Lower surface tension
 - Clean Pb-free flux soils
- Improved cleaning equipment
 - Optimize flow, pressure, and directional forces
- Result
 - Broader processing window to addressing challenging cleaning needs

References

- Bixenman, M., Gervascio, T., Lasky, R. (2007). Using six sigma to optimize cleaning in Class III manufacturing environments. SMTAI Technical Forum, Gaylord Palms Resort and Convention Center, Orlando Florida
 IPC, (2006-2007). IPC international technology roadmap for electronic interconnections. Retrieved from www.ipc.org
- Stach, S., & Bixenman, M. (2005, Sep). Optimizing cleaning energy in electronic assembly spray in air systems: Phase II. SMTAI Technical Forum, Rosemont, IL, Donald Stephens Convention Center.

Author

Mike Bixenman, DBA Chief Technology Officer Kyzen Corporation 430 Harding Industrial Drive Nashville, TN 37211 mikeb@kyzen.com

