

Defluxing of Eutectic and Lead-Free PCBs in a Single Cleaning Application

Speaker:

Umut Tosun, M.S. Chem. Eng.

ZESTRON Application Technology Manager

- 1. Lead-Free Effects on Cleaning
- 2. Regulation & Definitions
- 3. Main risks of Mixed Processes
- 4. Conclusion

1. Lead-Free Effects on Cleaning

Lead-Free Effects on Cleaning

From Lead to Lead-free	Consequences
More aggressive activators	 →Risk of corrosion on leads and connectors →Danger of leakage currents

Lead-Free Effects on Cleaning

From Lead to Lead-free	Consequences
More aggressive activators	→Risk of corrosion on leads and connectors →Danger of leakage currents
Higher rosin content	 →Formation of hairline cracks on coatings →Affected signal integrity with HF (RF) assemblies →Impaired testability

Damaged Coating

Higher rosin content

 \rightarrow Worse dewetting

→ No adhesion of coating

Damaged Coating

1 - Non wetting

2 - Pores

3 - Crack

Affected Signal Integrity with HF Assemblies

Testability – Contaminated IC needle

With conventional flux residues

With lead-free flux residues

Lead-Free Effects on Cleaning

From Lead to Lead-free	Consequences
More aggressive activators	→Risk of corrosion on leads and connectors →Danger of leakage currents
Higher rosin content	 →Formation of hairline cracks on coatings →Affected signal integrity with AF assemblies →Impaired testability
Containing Ag solder paste	→Tendency to form temporary dendrites

ŀ

Climatic Reliability

- \rightarrow Electrochemical migration
- → Through continuous SIR measurement

Ag lead-free solder paste tend to form temporary dendrites

Lead-Free Effects on Cleaning

From Lead to Lead-free	Consequences
More aggressive activators	→Risk of corrosion on leads and connectors
	→Danger of leakage currents
Higher rosin content	 →Formation of hairline cracks on coatings →Affected signal integrity with AF assemblies →Impaired testability
Containing Ag solder paste	→Tendency to form temporary dendrites
Increase in solder temperature	 →Impacts the delineation of the print →Increase in residues due to degassing →Burnt in fluxes

Is the print stability guaranteed at higher temperature? → Danger of solder balling after reflow!

Get Interconnected.

IPC

2

<u>mg</u> g

Emission

IPC

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

Increased Residues due to Degassing

The boost in temperature increases degassing

Residues due to degassing on chips

2. Regulation & Definitions

RoHS regulation & limitations (effective July 1st, 2006)

• Current legislation restricts the level of lead in leadfree assemblies not to exceed 0.1% by weight.

RoHS included other heavy metals:

- Cadmium (0.01%)
- Mercury (0.1%)
- Hexavalent Chromium (0.1%)

SSOCIATION CONNECTING

Get Interconnected

How to convert a straight DI designed machine one?

• Why is it that water-soluble fluxes in conjunction with lead-free alloys are not very cleanable with DI-water anymore?

Industry users FAQs:

• Can I use my existing chemistry based cleaning process to clean eutectic and lead-free alloys in the same process?

3. Main Risk of Mixed Processes

Mixed Cleaning Process Definition:

Cleaning lead-free <u>and</u> eutectic assemblies in a single process

Main risks of Mixed Processes:

- A. Reduction of lead salts via redox reaction
- B. Lead-based ionic residues, due to insufficient rinsing

A. Reduction of lead salts via redox reaction:

A low or high pH-level respectively can affect the redox potential between different metals.

The redox potential for Lead and Tin in an alkaline aqueous solution is:

$Pb + 3 OH \rightarrow Pb(OH)_3 + 2e^{-1}$	ε = -0.540
Sn + 3 OH⁻↔ Sn(OH)⁻₃ + 2e⁻	ε = -0.909

Impact of the redox reaction will be dependent on numerous factors such as:

- Solubility of Tin and Lead in the respective cleaning agent
- Temperature of the cleaning agent
- pH-value of the cleaning agent
- Exposure time of the cleaning agent
- Concentration of the involved species

IPC

B. Lead-based residues, due to insufficient rinsing

A common ionic contamination limit (J-STD-001-C § 8.3.6) is below 10.06 μg / sq.in.

Experimental tests confirmed the limited solubility of lead

Concentration gradient and solubility of lead salts

⇒ Solubility of Lead and Tin can be dependent on the cleaning agent in use

To fully understand risks of a mixed cleaning process, current customer samples were collected:

⇒ The maximum level of Lead was always found to be lower than 10 mg/L

Outcome: No linear relationship between contamination and throughput due to:

- Constant precipitation
- Consistent replenishment of fresh cleaning medium in high volume applications

Determination of experimental error of lead-free boards:

- Lead-free: 0.0 to 0.3 mg/cm²
- Eutectic: 3.0 to 5.0 mg/cm²
- ⇒ Test confirmed the 1:1000 ratio (0.1% lead limit according to RoHS) between eutectic and lead-free assemblies.

	Lead-free measurements (mg/sq cm)				
Board #	Тор	Center	Bottom		
1	0.0	0.0	0.0		
2	0.2	0.1	0.1		
3	0.2	0.0	0.0		
4	0.1	0.0	0.1		
5	0.0	0.0 0.0 0.1			
6	0.0	0.0 0.1 0.			
7	0.2	0.2 0.3 0.1			
8	0.2	0.2 0.2 0.1			
9	0.1	0.1 0.1 0.1			
10	0.0	0.3	0.2		
11	0.1	0.1 0.2 0.3			
12	0.3	0.3 0.0 0.0			
13	0.1	0.2	0.2		
14	0.0	0.0	0.1		
15	0.2	0.1	0.2		

	Lead-free measurements (mg/sq cm)			
Board #	Тор	Center	Bottom	
16	0.3	0.2	0.1	
17	0.0	0.0	0.0	
18	0.2	0.1	0.1	
19	0.2	0.0	0.0	
20	0.0	0.1	0.0	
21	0.1	0.0	0.2	
22	0.0	0.0 0.0 0.1		
23	0.2	0.2 0.0 0.0		
24	0.3	0.2	0.2	
25	0.1	0.1	0.1	
26	0.2	0.2	0.0	
27	0.0	0.1	0.1	
28	0.0	0.2	0.1	
29	0.2	0.0	0.0	
30	0.0	0.0	0.1	

Experimental error determination on lead-free boards

Reference Spectrum for eutectic board with element characterization:

Lead-free board with element characterization:

Side-by-side lead contamination comparison of lead-based and lead-free assemblies:

Experimental laboratory analysis (WCS):

Parameters:

- Cleaning agent A
- 15% concentration

50 mg/l of lead salt:*

• 5 minutes exposure time

Room temperature

100mg/l of lead salt:*

mg/cm ²	Sample board	After 1 rinse	After 2 rinse	mg/cm ²	Sample board	After 1 rinse	After 2 rinse
Тор	0.1	0.1	0.1	Тор	0.1	0.1	0.1
Center	0.2	0.2	0.2	Center	0.2	0.0	0.0
Bottom	0.1	0.2	0.2	Bottom	0.1	0.1	0.1

*Observed at 10 mg/l of Pb solubilized

⇒ Increase in lead salts and second rinse did not increase lead

Experimental laboratory analysis:

٠

Parameters:

Cleaning agent A

• 5 minutes exposure time

50 mg/l of lead salt

15% concentration

120°F:

150°F:

mg/cm ²	Sample board	After 1 rinse	After 2 rinse	mg/cm ²	Sample board	After 1 rinse	After 2 rinse
Тор	0.1	0.1	0.0	Тор	0.1	0.1	0.0
Center	0.2	0.2	0.1	Center	0.1	0.1	0.0
Bottom	0.1	0.3	0.0	Bottom	0.2	0.1	0.2

⇒ Increase in temperature also shows no increase in lead

Complementing trials with inline manufacturer to simulate mechanical energies:

Preparation:

- 500 eutectic boards were pre-run to establish the base values for lead and tin in the solution
- Sample taken from this solution was analyzed for heavy metals and confirm the maximum levels of tin and lead

Lead-free	Temp	Exposure	Pb-con ⁻	tent measu	red [mg/cm ²]
boards	[°F]	time [sec]	Тор	Center	Bottom
1	125	120	0.0	0.2	0.0
2	125	260	0.1	0.0	0.0
3	140	120	0.2	0.1	0.1
4	140	260	0.0	0.2	0.1
5	160	120	0.1	0.1	0.2
6	160	260	0.2	0.1	0.0

Post Wash Spectrum 2.5 ft/minute vs. 1.2 ft/minute

Lead-free Boards	Temperature [°F]	Exposure time [sec]	Ionic Contamination [µg/sq cm)
1	125	120	0.14
2	125	260	0.21
3	140	120	0.18
4	140	260	0.02
5	160	120	0.08
6	160	260	0.11
Partial Rinse	150	88	0.38
Partial Rinse	150	180	0.23
No Rinse	N/A	N/A Air Dried	1.10

Experimental results obtained based on inline cleaning process

4. Conclusion

Conclusion

- ✓ Among the cleaning agents tested, lead levels were less than 10 mg/liter (40 mg/gallon).
- No measurable reduction (chemical reaction) of lead was detectable.
- ✓ Optimal rinsing can provide reliable RoHS compliance by eliminating ionic (lead containing) contamination.
- A mixed process is feasible without exceeding RoHS and WEEE limitations for lead-free.
- ✓ Dependency of cleaning agent overall
 ⇒ results based on aqueous based products.

