

PCB Library Creation and Maintenance

Susy Webb, CID Sr PCB Designer Fairfield Industries Houston, Texas

swebb@fairfield.com

© 2007 Webb Designs

Library standards give Designer

Organization

• All parts made the same way

Same shape, appearance, attributes, etc

Time effectiveness

• Many people use ONE library

Reduces edit time and error rate

Consistency

• Reliability of part information

Consistent storage location

Get Interconnected.

What part is / what it does Source / Load / Bi-directional Pins and Gates Rise / Fall Time Voltage Component Height Manufacturer Information Part number / footprint needed RoHS and Manufacturing information

Footprint Standards

- Equal appearance
 - Equal attributes
 - Equal layers
- Equal naming convention
 - Equal orientation
 - Equal model attachment

Footprint (Land Pattern) Websites

- http://www.pcblibraries.com/ (The IPC Standard)
 - www.smtplus.com
 - Other vendors of footprints
- Individual vendor's websites (data sheets) get mfr suggested footprints

SMT Parts built per Calculator or Standard

PCB Libraries calculator **IPC-7351** automatically calculates pad and part size based on the pin and part size variables you enter.

omponent Data	Viewer
Pitch [1.27mm [50mils] •	On Top
Pins (exclude tab) 16 Renet	
Mini Max Search	C SikSteen C
L 9.97 10.63	Countrand
WT 31 .51	P Dimensions
W2 40 1.27	Fin No's
T2	Pedraw
A 7.50 B 10.50 OK	B +
Н 2.65	
"Calculated value	
olerance and Settings	
E Fab Assy	
settings Tolerance (±) 0.05 0.05	
Gx G Specing Minimums 20 20	
Z/G Roundott 20	
Environment B - NOMINAL	₩2 ++ S+
nvironmental Variables	
Courtyard Excess 25	
XRoundoff .10	Land Pattern
Goal Min Max	GXmin 67 Gmin 6.00 Zmax 11.40 X1 .60 Y1 2.30 C 9.10 V1 11.90 R1 6.00
Toe .35 .38 .71 Heel .35 .31 1.02	V2 11.00 R2 10.50
Side .03 .02 .15	E 1.270 Name SOIC127P1030-16N Celculate

Calculator shown from the PCB Libraries web site.

Understand how parts (Libraries) affect PCB designer and others

- Schematic entry
- Other Designers
 - Fabricators
 - Assembly
 - Test
 - Technicians
 - Repair

Footprint Information:

• Attribute Standards for footprint information In ADDITION to info already discussed:

Description
 any Part number

- Company Part number
- Ref Des size and location
 - Voltage
 - Checked
 - Mfr Part Number
 - MFR ref Info
 - Lead Free
 - Alternate parts

Metric vs. Imperial

When making PCB Footprint:

- Build Metric parts on Metric grid
- Build Imperial parts on Imperial grid
- Using the 'Native Grid' prevents tolerance buildup when translating from one grid system to the other
- Origin and part centroid on proper grid for placement

Get Interconnected

IPC

Pin Names vs Pin Numbers

- Numbers are easy for all to remember and duplicate in most parts
- Names describe function as well as position
- Some parts leave information ambiguous when using only numbers SOT23 -1E2B3C

Pin and Gate Swapping

Pin Swap

Gate Swap within Part

Gate Swap Part to Part

Footprint Silkscreen Markings

Pin 1 and 2 indication, 10s
1A, 1B, etc.

+ and/or –

 Complete body shape size including shape irregularities

• **Consistency** on indicators helps those who assemble and use the board

• Pin one indicator outside part silkscreen Size = EASILY viewable • 0 U44

Standard Component Orientations by PCB Libraries

Part Courtyard

- Sets spacing around part with tolerances
 - Allows room for placement head
 - Allows for rework room

Assembly Drawing info built into Part

• Maximum part outline

Pads shown

• Reference Designators

- Pin one indicators
- Polarity Indicators
- Build information into parts to help you

Build information into parts to help you

Top layer and Silkscreen Add Assembly Layer

3D Modeling of parts Pro-E, SolidWorks, etc.

Pictures courtesy of PCB Libraries

Solder Mask Opening

 Minimum solder mask 'web' size between pads depends on type of mask used

Maintenance Naming Conventions Padstacks 70c40d TH 70s40d SM12x84 SM_12rec84 SM.5obl1.27mm 000 (SM-5X1-27mm) Pad sizes mil or mm

Maintenance Naming Conventions Generic Footprints

• Make symbols and footprints as generic as possible for re-use

Nand_2-Input
Invertor
Res_0805
C_T491A(3216)
SOIC14

Maintenance Part Naming Conventions

• Organize by name in the software library with a code or naming convention like:

• [C-74H	HC257	Ď
-----	-------	-------	---

- Ics-74HCT257D (soic)
- Ics(soic)-74LS240D-i (ipc)
- Ict(tssop)-74HCT257PW-d (data sht)
 - R_0805-s (software)
 - C_T491D(7343)-i

TYPE NUMBER
74HC257N; 74HCT257N
74HC257D; 74HCT257D
74HC257DB; 74HCT257DB
74HC257PW; 74HCT257PW

Library Part Naming Conventions Land Pattern

SO14	SOIC127P600-14N	SOIC,1.27mm pitch,14 pin,4.00mm W X 8.75mm L X 1.75mm H Body
SO14M	SOIC127P760-14N	SOIC,1.27mm pitch,14 pin,5.70mm W X 10.10mm L X 2.03mm H Body
S014W	SOIC127P1030-14N	SOIC,1.27mm pitch,14 pin,7.50mm W X 9.20mm L X 2.65mm H Body
SO16	SOIC127P600-16N	SOIC,1.27mm pitch,16 pin,4.00mm W X 10.00mm L X 1.75mm H Body
SU16M	SUIC127P760-16N	SUIC,1.27mm pitch,16 pin,5.70mm W X 10.40mm L X 2.03mm H Body
S016W	SOIC127P1030-16N	SOIC,1.27mm pitch,16 pin,7.50mm W X 10.50mm L X 2.65mm H Body
SO18	SOIC127P760-18N	SOIC,1.27mm pitch,18 pin,5.70mm W X 12.60mm L X 2.03mm H Body
S018W	SOIC127P1030-18N	SOIC,1.27mm pitch,18 pin,7.60mm W X 13.90mm L X 2.65mm H Body
	SOIC127P1420-21N	SOIC,1.27mm [50mils] pitch,20 pin,11.10mm W X 16.00mm L X 3.60mm
	SOIC127P1420-21AN	SOIC,1.27mm [50mils] pitch,20 pin,11.10mm W X 16.00mm L X 3.60mm
SO20	SOIC127P760-20N	SOIC,1.27mm pitch,20 pin,5.70mm W X 12.90mm L X 2.03mm H Body
S020W	SOIC127P1030-20N	SOIC,1.27mm pitch,20 pin,7.50mm W X 13.00mm L X 2.65mm H Body
S024W	SOIC127P1047-24N	SOIC,1.27mm pitch,24 pin,7.60mm W X 15.85mm L X 2.64mm H Body

Land Pattern, pitch, lead span, total pin count

Dimensions

Naming Convention used by PCB Libraries

Maintenance Checking

• For new parts, make a 1:1 Xerox print of footprint and place part on it for 'general' size comparison

 If you have a lot of new parts, consider sending out a 'padmaster' board for checking the parts against

Check gerber layer with it's associated layers

 top with solder mask top

Maintenance Saving

• Standard where parts are saved

- Multiple libraries or one within software ICs, Caps, Res, Inductors, Mech, etc
 - DO NOT keep parts locally... store all in library directory
- Keep Cross Reference of packaged part to company part number

Maintenance Saving

 Make a 'known good parts' library
 Parts produced on a board, and there were no fab or assembly problems

 Permanent Network "Home" Library where Golden parts live – Read only

Check out/check in system

References

Gary Ferrari, Ferrari Technical Services, "Basic Printed Circuit Board Design" Presentation

Tom Hausherr, PCB Libraries, *"The Future of Cad Libraries",* Printed Circuit Design and Manufacture Magazine and

"Electronic Component Zero Orientation For CAD Library Construction"

IPC-2221, 2222, A-610, CM-770 and 7351

Lee Ritchey, Speeding Edge, "Padstack Design & Printed Circuit Board Stackup Generation for High Yields" Presentation

