

QFN Rework Challenges in a Lead Free World

IPC Midwest - Sept. 2007

Neil O'Brien www.finetechusa.com

Introduction/Abstract

- Small component on densely populated board is a typical scenario today.
- The MLF/QFN package has seen rapid industry acceptance.
- Size, pitch, and density eliminates hand repair.
- Lead Free solder increases these challenges around the rework process.
- Higher reflow temperatures mean tighter thermal control needed. Smaller process window.

Introduction/Abstract

- QFN Rework Practices Overview
 - Component Removal
 - Site Preparation/Solder Removal
 - Solder Paste Printing
 - New Component Soldering
- Components Studied:
 - 5mm MLF16 0.8mm
 - 3mm MLF12 0.5mm
 - 7mm QFN48 0.65mm
- Stencil Variations: 4mil, 5mil, 6mil

Why QFN/MLF?

- Small size
- Cost effective
- Good yield/reliability
- Mechanical and Electrical Advantages
- Thermal performance exposed pad
- Single, double, triple row. Rival BGA.

Courtesy of Texas Instruments

Design Advantages

- Physical / Space saving.
- Area savings from 40% to 76% vs. SOIC.

Attribute	SOIC-14 (D)	SSOP-14 (DB)	TSSOP-14 (PW)	TVSOP-14 (DGV)	QFN-14 (RGY)
Length, mm	8.65 ±0.10	6.20 ±0.30	5.00 ±0.10	3.60 ±0.10	3.50 ±0.15
Width, mm	6.00 ±0.20	7.80 ±0.40	6.40 ±0.20	6.40 ±0.20	3.50 ±0.15
Height, Max., mm	1.75	2.00	1.20	1.20	1.00
Pitch, mm	1.27	0.65	0.65	0.40	0.50
Footprint, mm ²	51.90	48.36	32.00	23.04	12.25
Weight, g	0.127	0.122	0.055	0.040	0.032
Area savings, %	76.40	74.67	61.72	46.83	-

Courtesy of Texas Instruments

Design Advantages

- Electrical performance due to unique package design.
- Improved Thermal Impedance due to ground pad soldered to PCB.
- Inductance (L) reduced due to ground pad and no leads. No long "wires" to act as inductor.
- Simplified alternative to BGA.

16-Pin QFN Package-Parasitics Comparison

	SOIC-16 (D)	\$\$OP-16 (DB)	T SS OP-16 (PW)	TV S OP-16 (DGV)	QFN-16 (RGY)
Average R, Ω	0.039	0.048	0.045	0.039	0.039
Average L, nH	3.453	3.536	2.593	2.543	0.886
Average C, pF	0.521	0.376	0.281	0.386	0.327

Courtesy of Texas Instruments

Lead Free Alloys- SAC Tin/Silver/Copper

Melting temperature of different solder materials.

IPC

- System capable of process control & repeatability.
 - preheating
 - activation phase
 - peak zone
 - Cooling
- Vision assisted with good resolution&accuracy.
 - The Experimental System:
 - Also "Nitrogen Switching" via software programmable set points.
 - 10micron (.0004") standard placement accuracy.
 - Precise control of temperature and airflow "Thermal Management"

MIDWEST Following the Standard IPC / JEDEC J-STD-020C

Peak $T_p = 245^{\circ}$ C for large packages ≥ 350 mm3 Peak $T_p = 250^{\circ}$ C for small packages ≤ 350 mm3

DC ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES

Get Interconnected.™

IPC

QFN Profile - Lead Free

A = Solder joint temperature B = Board temperature

6.4

QFN Lead Free Rework Practices

- 1. Board Preparation
- 2. Preheating: Bottom Heating
- 3. Component Removal
- 4. Residual Solder/Site Cleaning
- 5. Paste Printing/Component Handling
- 6. Component Placement/Soldering

ASSOCIATION CONNECTING

Rework Practices 1

Increasing Reflow Temperature

PCB Preparation

- Moisture absorption by components depending on environment and technology.
- Vapor pressure causes internal damage to components and or PCB. Known as "pop corning"
- IPC standards (8 levels) for moisture sensitivity "MSL".
- Generally from 80° to 125°C for up to 24 hours.
- ✓ Bake and Bag option, dry storage.

ASSOCIATION CONNECTING

Rework Practices 2

Localized Heating example.

Full Area Board Heating example.

Board Preheating:

- PCB fiberglass, resin, copper, components, etc.
- Thermal expansion CTE varies with each.
- Unevenly applied heat will cause thermal stress and warpage.
- ✓ Increased temps. for Pb free magnifies PCB stresses.
- Underboard heating.
 Localized and full area (examples shown).

Rework Practices 2

Board Preheating Principles:

- Board Thickness will effect pre-heating phase. \checkmark
- Lead Free Bottom temps. ~ 150° \checkmark
- \checkmark Start sensors
 - sometimes:
 - a = start sensor
 - b = nozzle
- External Thermocouples:
 - \checkmark A. Directly underneath component to be reworked.
 - \checkmark B. Near board edge monitor delta.

Rework Practices (3)

Component Removal:

- ✓ Typical ramp rates between 2 and 5° deg/sec.
- Normally component not to be re-used. Then ramp rate can be higher.
- Caution for neighboring components. Temp and Airflow.
- QFN Rework:

a. Develop profile to ensure all solder has reflowed before attempting removal.

b. SURFACE TENSION OF SOLDER ON THERMAL PAD!

c. Nozzle design, vacuum pull considerations.

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES

Rework Practices (4)

Site Preparation - Residual Solder Removal:

- 1. Machine assisted methods via vacuum.
- 2. Solder wick and soldering iron.
- 3. Re-use residual solder (Nitrogen recommended). Not typical.

Before Site Clean

Process Observation

IPC

After Site Clean

Rework Practices (5)

Printing Solder Paste for QFN's:

- 1. Mini Stencil board or component.
 - Board Density and small QFN sizes make board printing difficult or impossible.
- 2. Dispense paste.
 - Requires dispenser system. Manual, semi, auto.
 - Volume control is an issue.
 - Board removal from rework system. More handling/time.

Rework Practices (5) – Stencil Design

- Thickness 3 to 4mil
 75 to 100µm
- Area Ratio >.66 still applies.
- Transfer Efficiency > 80%
- Paste Type III, IV

Overlay Image: Component to Stencil

Rework Practices (5) – QFN Stencil Design

ELECTRONICS INDUSTRIES®

Ex. Cross Hatch "Window Pane"

Rework Practices (5) – QFN Stencil Design

Get Interconnected.™ MIDWEST

IPC

IPC

ASSOCIATION CONNECTING ELECTRONICS INDUSTRIES®

4 mil stencil before paste

Component placed to stencil

5mm QFN from 4mil stencil

"Hands Free" Component Handling (5)

Printing component

Pasted – ready for pickup.

Flip – ready for nozzle pickup

Align, place and reflow.

Rework Practices (6)

Component Placement & Soldering:

- 1. Machine alignment of component to board. Overlay optics typical. Little "self alignment" noted.
- 2. Lead Free soldering profile following IPC/JEDEC 020
- 3. Solder Joint and Board Temperature profiled. Component top side temp. also confirmed within mfg. spec.

QFN Placement & Soldering (6)

A = Solder joint temperature

B = Board temperature

Rework Practices (6)

- 5mil stencil produced excessive paste volumes for small 5mm, 3mm QFN's
- Part "swimming"

5mil Stencil Results

Rework Practices (6)

- 6mil stencil ALSO produced excessive paste volumes for small 5mm, 3mm QFN's
- Part "swimming"

6mil Stencil Results

Conclusions – QFN Lead Free Rework

- Pb Free = Higher Temperatures = smaller process window.
- Process Control = Thermal management includes Temperature & Airflow.
 (JEDEC std. can be achieved)
- QFN size&mass means strict airflow control and high placement accuracy.
- Reduced "self alignment" during reflow.
 Placement accuracy more important (ever increasing miniaturization).

More Conclusions – QFN Lead Free Rework

- Hands free/machine assisted component handling reduces rework time and increases yield.
- Stencil printing process is KEY to high yield QFN rework.
- System optics help with stencil inspection and paste volume inspection.
- Follow Component supplier specifications.
- Nitrogen helps process window. Long term reliability improved.

THANKS FOR ATTENDING IPC Midwest!

NEIL O'BRIEN neil@finetechusa.com

