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Embedded Planar Capacitors

• Embedded planar capacitors are thin laminates embedded inside a PWB that 

serve both as a power/ground plane and as a parallel plate capacitor.

• These laminates extend throughout the board and consist of a thin dielectric 

(8-50 mm), sandwiched between two copper layers.

• Their low parasitic inductance makes them effective replacements for discrete 

local decoupling capacitors that function at high frequency.
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Dielectric Materials

• The dielectric material in a planar embedded capacitor can be:

– Polymer (such as epoxy or polyimide)

– Polymer reinforced with glass fibers (to provide mechanical strength).

– Polymer filled with high dielectric constant ceramic

• The dielectric constant of pure polymer or polymer reinforced with glass 

fibers is low (typically <5). 

• Polymer ceramic composite (polymer filled with ceramic powder) is one of 

the most promising materials for embedded capacitors due to its higher 

dielectric constant.
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Why Polymer-Ceramic Nanocomposites?

• Pure ceramic dielectrics are brittle and require processing temperatures 

(~1100oC) that are much higher than the processing temperature of typical 

PWB manufacturing process (~300oC).

• The polymer typically used is epoxy.

• The ceramic widely used is Barium Titanate (BaTiO3) whose dielectric 

constant (e) can be as high as 15,000 in the crystalline phase.
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The effective dielectric constant (ec) of the composite can be increased 

by increasing the ceramic loading (up to 50-60% by Vol.)
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Reliability of Embedded Planar Capacitors 

• Failure of an embedded capacitor can lead to board failure since 

these capacitors are not reworkable.

• Change in electrical parameters of an embedded capacitor,

such as:

– capacitance (C), 

– dissipation factor (DF), and 

– insulation resistance (IR),

can affect a circuit connected to these capacitors.



Motivation for CALCE Research on 

Embedded Planar Capacitors

• Adoption of embedded planar capacitors would be encouraged 

by availability of

– failure models;

– long term reliability data; and

– insights into failure mechanisms 

(e.g., the mechanism of leakage current).



CALCE’s Reliability Testing of Embedded Capacitors

Test vehicle 

of embedded 

capacitor

Accelerated tests:

1) Temperature and voltage

2) Temperature-humidity-bias

Measure electrical parameters 

in-situ

1) Capacitance (100 kHz)

2) Dissipation factor (100 kHz)

3) Insulation resistance (10V)
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Test Vehicle

• The test vehicle was a 4-layered PWB in 

which a commercially available planar 

capacitor laminate formed layer 2 and layer 3. 

• The power plane was etched at various 

locations to form individual capacitors and 

the ground plane was continuous. 

• Two sizes of capacitor were investigated:

– Group A (small): 0.026 in2, 400 pF; 

80 capacitors/test vehicle

– Group B (large): 0.19 in2, 5 nF; 

6 capacitors/test vehicle.

A B

• The failure criteria used were:

– 20% decrease in capacitance (C)

– increase in dissipation factor (DF) by a factor of 2 

– drop in insulation resistance (IR) to approximately 1.1 MOhms.



Sectional View of an Embedded Capacitor

• Each capacitor had its power plane connected to a PTH and the ground plane 

was common for all capacitors.

• The dielectric (8 mm thick) was a composite of BaTiO3 of 250 nm mean 

diameter loaded to 45% by volume in epoxy.

Power plane (Cu)

Ground Plane (Cu)

Dielectric (Epoxy+BaTiO3)



Stress Levels for Life Testing

• Maximum temperature (Tmax) and voltage (Vmax) were selected such that:

– Tmax < 130oC (maximum operating temperature of the PWB).

– Vmax < VBD (breakdown voltage at that temperature).

• The reduction in the breakdown voltage with temperature can be explained by 

an increase in free volume of the polymer matrix.
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Design of Experiments for Lifetime Modeling

• Failure terminated highly accelerated life tests (HALT) were conducted 

at multiple stress levels.
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Failure Modes Observed During Lifetime Testing

• The failure modes observed were:

– Sudden decrease in insulation resistance

– Sudden increase in dissipation factor

– Gradual drop in capacitance

• There was no trend in the values of IR or DF before failure.

Avalanche breakdown of 

the dielectric
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Effect of Temperature and Voltage on IR
Prokopowicz1 proposed a model that is used in accelerated life testing of 

multilayer ceramic capacitors (MLCCs) to describe IR failures. 

where t is the time-to-failure, V is the voltage, n is the voltage exponent, Ea is 

the activation energy, k is the Boltzmann constant, T is the temperature, and 

the subscripts 1 and 2 refer to the two aging conditions.
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had not previously been established.

1T. Prokopowicz and A. Vaskas, Final Report, ECOM-90705-F, pp. 175, NTIS AD-864068, 1969.



Lifetime Modeling of Avalanche Breakdown Failures 

• At all stress levels, the time-to-failure was observed to follow a bimodal distribution:

– A mixed Weibull with 2 subpopulation was used to calculate the mean time to 

failure (MTTF).

• A shorter time-to-failure (all Type I) of large capacitors implies that their 

failures were defect driven, whose probability increases with capacitor area.

• Statistical analysis was not performed on large capacitors due to small sample size (4).
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Activation Energy (Ea) of the Prokopowicz Model

Type I failures seem to be random (b ~1) and Type II represent a wear-out

mechanism (b >1) so only Type II failures were modeled.

Type I (Random failures) Type II (Wear-out failures)

b h MTTF (hrs) b h MTTF (hrs)

125oC and 285V 1.0 130 130 6.0 444 413

115oC and 285V 1.1 65 63 1.8 979 871

105oC and 285V 1.6 267 238 4.9 2937 2702
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Voltage Exponent (n) of the Prokopowicz Model

Type I failures seem to be random (b ~1) and Type II represent a wear-out

mechanism (b >1) so only Type II failures are modeled.

Mode I (Random failures) Mode II (Wear-out failures)

b h MTTF (hrs) b h MTTF (hrs)

125oC and 285V 1.0 130 130 6.0 444 413

125oC and 250V 1.4 188 171 5.5 739 680

125oC and 225V 1.0 935 935 22.3 2058 1996
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• In small capacitors (group A) the onset of logarithmic degradation was delayed by 

a time which is referred to as to.

• The linear degradation region was absent in group B (large) capacitors.

Group A (small) Group B (large) 

Failures were not observed in group B (large) capacitors due to a 

large value of initial capacitance (Co1) as compared to group A.

Gradual Decrease in Capacitance
(Plot of Capacitance at 125oC and 285 V for Group B Capacitor)



Effects of Temperature on Capacitance

IC
An increase in plate 

spacing as a result of 

thermo-mechanical 

stress generated due to 

CTE mismatch

Decrease in the dielectric constant:

•Aging in BaTiO3

•Residual stress relaxation in polymer

tkCC o ln

where C is the capacitance at time t, Co is the initial capacitance, k is the 

capacitance degradation rate, and t is time.

Aging model



Modeling the Decrease in Capacitance During HALT

– Time-to-failure as a result of 20% decrease: 

Stress levels Small (group A) Large (group B)

105oC, 285V 12.64×10-11 3.35×10-11

115oC, 285V 7.94×10-11 3.43×10-11

125oC, 285V 6.89×10-11 3.98×10-11

125oC, 250V 4.43×10-11 7.21×10-11

125oC, 225V 4.13×10-11 4.97×10-11
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Thickness Effect: 8 mm versus 14 mm
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Effect of Humidity

• Under humid conditions, the capacitance and DF were found to increase due 

to moisture absorption in the dielectric (since ewater> eair , where e is the 

dielectric constant).

• The primary site of absorbed moisture in these composites is the interface

between the ceramic and the polymer matrix.

• The level of moisture absorbed in these composites increases with a decrease 

in the ceramic particle size or an increase in the ceramic loading, both of 

which increase the interfacial area.

Polymer matrix

Ceramic particle

Water shell



Percentage Increase in Capacitance

• The increase in capacitance at 85oC, 85% RH and 0 V after 2000 hrs was

– 19.6% ± 1.3 for group A (small) capacitors

– 22.6% ± 0.2 for group B (large) capacitors

• The capacitance returned to its pre-THB value during a bake at 125oC in 

about 20 hrs.
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IR failures as a result of formation of a conduction path were observed :

– 6/36 small capacitors and 2/4 large capacitors failed by this mode.
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Approach

Fabricated Cu/Dielectric/Cu structures 

with epoxy-BaTiO3 nanocomposite 

dielectric with different 

loading conditions 

BaTiO3 particle 

diameter (nm)

100 300 500

BaTiO3

loading 

(Vol.%)

20 x

40 x x x

60 x

Loading conditions*

Cu/Dielectric/Cu

Area: 40 x 40 mm2

Dielectric thickness: 125 mm

Number of samples/loading condition: 3

Measured the following parameters:

1. Capacitance and dissipation factor (as a function of Temperature)

2. Leakage current (as a function of Temperature and Voltage)

*Three control samples were also fabricated with 0% loading



3D Regression of the Leakage Current Data
(To Calculate the Activation Energy of Ionic Hopping)

• 3D regression was performed on the leakage current data.

• The goodness of fit (R2) for ionic hopping conduction was greater than 0.90 
for all loading conditions, which indicated that hopping was the dominant 
conduction mechanism (as opposed to Schottky or Poole-Frenkel).
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Effects of Particle Loading and Diameter

• The effective dielectric constant was found to increase with the ceramic 

loading:

– The maximum dielectric constant was close to 25 at 60% loading 

(for 500nm particles).

• The effective dielectric constant was found to decrease when the particle 

diameter was reduced to 100 nm:

– this may be due to an increase in the agglomeration of ceramic particles.

• Leakage current was found to increase 

– with an increase in the ceramic loading;

– with an increase in the particle diameter.

• Leakage current was found to increase with temperature at all voltages 

(between 1 and 50 V) and loading conditions.
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Conclusions: Temperature and Voltage Aging

• Two failure modes observed: 

1. Sharp drop in insulation resistance (IR): bimodal 

• Mechanism: avalanche breakdown

• Type I (infant mortality): TTF decreased with capacitor area (defect driven)

• Type I (infant mortality): risk of failures increased for thinner capacitor

• Type II (wear-out): determined failure statistics (Weibull parameters, MTTF)

• Type II (wear-out): Prokopowicz model is applicable

– Values of constants n = 6.5, Ea= 1.1 eV; material, not size, dependent

2. Gradual decrease in capacitance (C)

• Mechanism: dielectric aging, plus stress relaxation and electrode separation

• TTF increased with capacitor area (governed by relative changes)

• Logarithmic aging model is applicable for large area capacitors

• Smaller capacitors have an initial linear aging trend

– Aging constant K = 5 x 10-11; material, not size, dependent



Conclusions: Temperature-Humidity (and Bias)

• Temperature-Humidity (no bias):

• Capacitance and DF both increased with time

• Mechanism: moisture diffusion/adsorption, leading to 

increase in dielectric constant

• Diffusion constant was calculated for moisture in 

epoxy-BaTiO3 nano-composite film: D ≈ 1 x 10-11 m2/s

• Reversible after bake-out

• Temperature-Humidity-Bias:

• The failure mode observed was a sharp drop in IR 

• DF also increased suddenly at the same time

• Mechanism: moisture diffusion/adsorption followed by conductive path 

formation (defect-mediated)

• Reversible after bake-out



Conclusions: Leakage Current Mechanism

• The leakage current was found to be governed by the ionic hopping 

mechanism

• The activation energy for ionic hopping was determined

– Ea is a function of particle diameter and loading

– Ea ≈ 0.9 eV, for loadings less than or equal to about 40 vol%

• The leakage current in the dielectric was found to increase 

– with an increase in the ceramic loading

– with an increase in the particle diameter

Recommended Future Work:

– Further investigate effects of area, thickness, particle loading, and particle 

diameter 

– Assess alternative film constructions and materials

– Investigate the path of leakage current and identify the charge carriers
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