Integration of AOI in a Total Quality Management Program

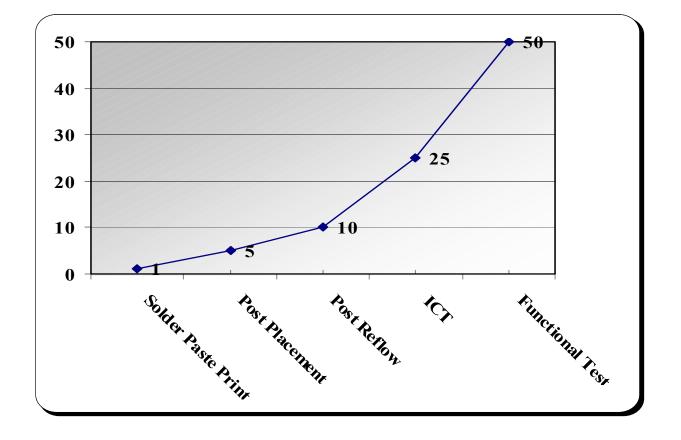
Matthew T. Holzmann President Christopher Group Inc.

CHRISTOPHER

The AOI Challenge

- Non-value added
- Undeniable contribution to quality
- Implementation can be expensive
- Defects still escape
- Accurate data collection difficult

Introduction of AOI Technology


- Fractional in most cases
- Mixed quality systems Manual + AOI
- Limited potential for integration

Goals

• Short term

- Find defects at earliest possible stage
- Repair
- Documentation
- Feed data back into process

Repair Cost

Long Term Goals

- Process improvement
- Eliminate causes of defects

Limitations of AOI

- No universal solutions
- Each has limitations & advantages
- Full color vs. gray scale
- Programming
- Ease of use

Defect Ranking

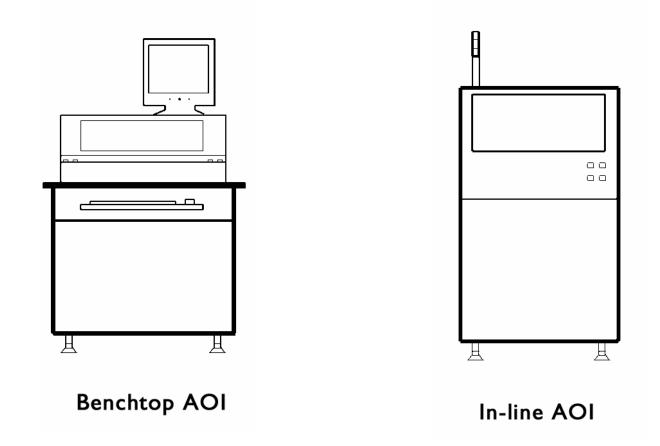
- Shorts / bridging
- Misaligned components/Tombstoning
- Opens
- Solder quality
- Missing components
- Polarity

Optimize Decision Matrix

- Optimize system criteria and goals
- Provide "clean" data

Criteria

- Analyze the process
- Identify
 - Product types
 - Mix
 - Types of components
 - Production rate
 - Process characteristics
 - Customer acceptance criteria

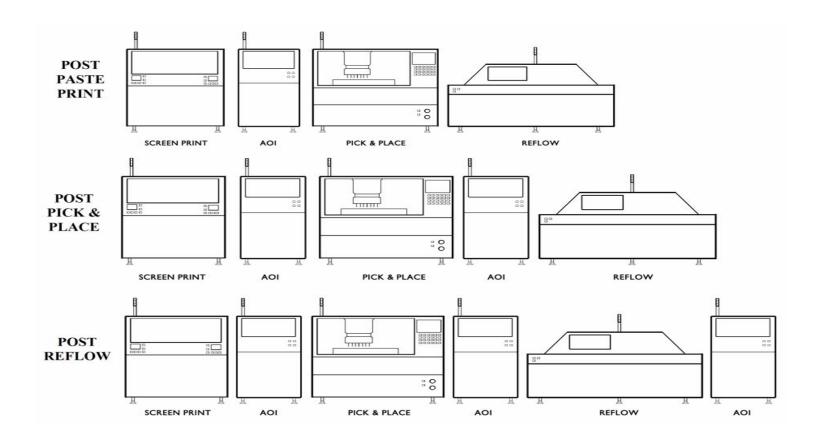

AOI Applications

- Paste inspection 2D or 3D
- Component verification Pre-reflow
- Component verification Post-reflow
- Solder quality inspection

In Line vs. Off Line

- High mix/low volume
- Industrial applications

Benchtop + In-line Machines


Regional Differences

- Asia
 - Benchtop systems common
 - Driven by real world economics
- Europe & North America
 - In-line systems common
 - Driven by OEM;s seeking comprehensive solutions

Trade-offs Can Be Considerable

AOI Locations

The Holy Grail

• A Universal Solution

Psst!! It Doesn't Exist !

Classification/Quantification

• Critical to quality & process control and customer service.

AOI Will Define Categories of Defects But ...

- Non-conforming but acceptable vs. fatal defects
- Review & classification critical
- Repair in situ not advisable
- Once verified data can be integrated with P&P and ICT.

Data Must Be Refined

- Categorization critical
- Consistency of definitions
- Input/output formats
- On-line is impractical

Verification/Repair Function

- 12-15 categories
- Common definitions across platforms
- Rapid response
- Corrective action

Line Monitoring

- Rapid upload of data from individual systems
- Real time inspection monitoring
- Comparison with historical data

Standardization of Data

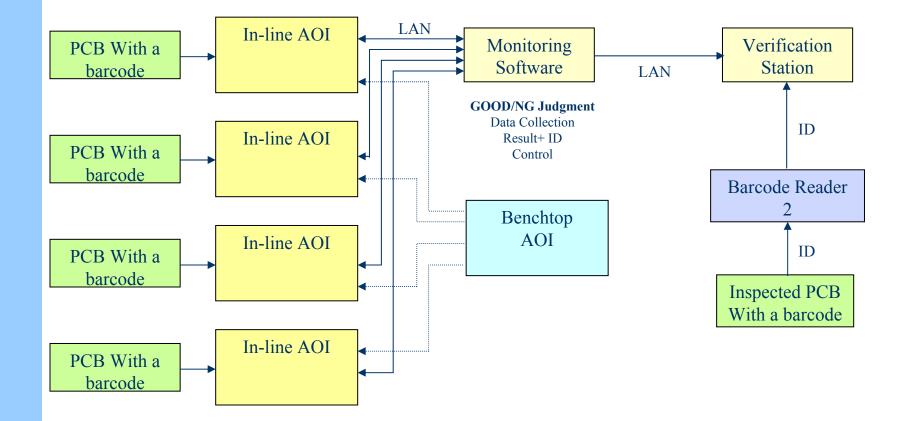
- Fiducial points
- Output formats
- X/Y axis definition
- Defect codes

- Reference designators
- Date/time stamps
- Information sequencing
- Graphics files

File Server

- Program storage
- Ready access
- Archival software

Serialization/Bar Coding


Summary

- Proper equipment selection
- Know your application
- Optimize equipment performance
- Adhere to consistent, objective standards
- Establish common terminology
- Ensure communication across platforms
- Ensure results are regularly and accurately entered in to data base

Integrated Data Management

Inline PCB Inspection

Confirmation & Repair

