

FUNDAMENTALS OF EMBEDDED PASSIVE COMPONENTS

Greg Link Topsearch Printed Circuits LTD

Power Distribution Model

Power Distribution Model

$$V_{load} = V_S - (V_{dc} + V_{ac})$$

 $V_{dc} = I_{dc}(R_s + R_b + R_c)$ = the dc voltage drop through the system.

I_{dc} is the dc current

R_s is the source resistance

R_b is the backplane resistance

R_c is the card resistance

 $V_{ac} = I_{ac}(Z_s + Z_b + Z_c)$ = the ac voltage drop through the system with corresponding impedances relating to each section of the system.

Add SMT Capacitor

Examine the cap circuit

The Cap Circuit

$$Z_{cap} = \sqrt{R_{cap}^{2} + X_{L}^{2} - X_{C}^{2}}$$

$$R_{cap} = \text{DC resistance}$$
 $X_L = 2*\pi*f*L_C = \text{Inductive Reactance}$
 $X_C = \frac{1}{2\pi*f*C_C} = \text{Capacitive Reactance}$
 $f = \text{frequency}$

Add SMT Capacitor

At high frequencies

$$Z_{cap} = \sqrt{(R_{cap}^{2} + (X_{L}^{2} - X_{C}^{2}))} \approx 2 * \pi * f * L_{C}$$

$$K_{cap} = DC$$
 resistance $X_L = 2*\pi*f*L_C = Inductive Reactance $X_C = \frac{1}{2\pi*f*C_C} = Capacitive Reactance f = frequency$$

Buried Capacitance

$$C = 225 * D_k * \frac{A_S}{t}$$

$$L \approx \frac{t}{-}$$

$$L \approx \frac{t}{w}$$

C =Capacitance

L = Inductance

 D_k = Dielectric Constant

 A_{S} = Surface Area of opposing planes

t = Dielectric thickness

w = width

225 = Faraday's constant

$BC\text{--}2000^{\mathsf{TM}}$

$$t = 2.0$$
 mils

e.g.: 225*4.5*
$$\frac{10"*10"*2 \text{ planes}}{2}$$

$$=101,250 pF \text{ or } 0.1 \mu F$$

Capacitance Effects

Capacitive Function


```
→ DK = 4, 0.002" dielectric thickness → DK = 20, 0.002" dielectric thickness → DK = 20, 0.001" dielectric thickness
```


Thick Film Technology

EMERGING TECHNOLOGIES

	Capacitance	Inductance	Dim Stability	Handling	Voltage With- standing	Distributed or Discrete
BC-2000™	Low	Low	Moderate	Acceptable	High	Distributed
Thick film High D _K	High	Very Low	Low	Difficult	Low	Discrete or Distributed
Emcap™	High	High	Moderate	Difficult	High	Distributed
Thin Film	Very High	Very Low	NA	NA	Very Low	Discrete

BURIED RESISTORS

Rectangular Resistor Values

$$R = \left(\frac{R_m}{t}\right) \frac{l}{w} = R_s \frac{l}{w}$$

R = Resistance

 R_m = Resistivity of material

t =Thickness of material

 R_s = Sheet resistivity

l = length of resistor

w =width of resistor

Rectangular Resistor Values

$$R = R_s \frac{l}{w}$$

$R_{\scriptscriptstyle S}$	1	W	R	
(Ohms)	(μm)	(μm)	(Ohms)	
50	500	250	100	
100	500	250	200	
150	500	250	300	
50	250	250	50	
50	500	250	25	

Annular Resistor Values

$$R = R_s \ln \left(\frac{D_2}{D_1} \right)$$

R =Resistance

 R_s = Sheet Resistivity

 D_2 = Diameter of Clearance

 D_1 = Diameter of Capture Pad

Temperature Rise vs Power Density for Different Areas

Temperature Rise vs Power Density for Different Core Thickness and Cladding

	Core Thickness	<u>Cladding</u>
$R1 = 250\Omega$	0.0025 in	1R25/0 (unclad)
$R2 = 250\Omega$	0.0025 in	1R25/1 (clad)
$R3 = 250\Omega$	0.025 in	1R25/0 (unclad)
$R4 = 250\Omega$	0.025 in	1R25/1 (clad)
$R5 = 250\Omega$	0.062 in	1R25/0 (unclad)
$R6 = 250\Omega$	0.062 in	1R25/1 (clad)

R Tolerance

	Resistivity	Thickness	R Geometry	Cu Geometry	Total	After Triming
Plated	2%	3%	5%	5%	15%	<1%
PTF	1%	5%	0-5%	5%	11-16%	<1%
Thin Film	0-1%	1%	1%	1%	3-4%	<1%
TF on Foil	0-1%	1%	1-5%	5%	3-12%	<1%

Assumptions:

0.010 - 0.012" smallest dimension

18"x24" panel