Development of high density and high frequency substrate using B^2it^{TM} technology for next generation

IPC annual Meeting November 5, 2002

Satoru Kuramochi Tomoko Maruyama Miyuki Akazawa Kouichi Nakayama Masataka yamaguchi Atsushi Takano Kazuo Umeda * Osamu Shimada* Yoshitaka Fukuoka **

Dai Nippon Printing Co., Ltd.

*D.T.circuit technology Co., Ltd.

** Weisti(worldwide Electronic Integrated Substrate Technology Inc)

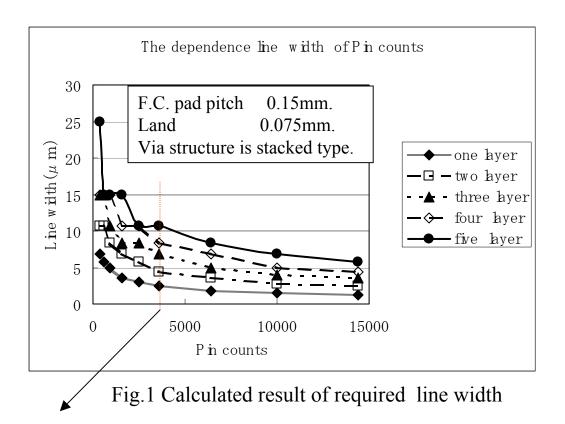
Contents

- 1, Background
- 2, Concept of Development
- 3, Fabrication Process
- 4, Electrical Characteristic
- 5, Summary and Future plan

IPC annual Meeting

November 5, 2002

1, Background


Technology nodes for High density packaging substrate

	2002	2004	2005	2007	2010	2016
Technology Nodes (nm) MPU/ASIC	180	90	80	65	50	26
Needs						
for BGA						
Ball-Pitch	0.4	0.4	0.4	0.3	0.3	0.25
(mm)						
FcpadPitch	0.16	0.15	0.13	0.12	0.09	0.07
(mm)						
Line (um)	10.7	10.7	9.2	9.2	6.4	5.0
Space (um)	10.7	10.7	9.3	9.3	6.4	5.0
Performance						
On-chip(GHz)	2.32	3.09	5.17	6.74	12	29
Performance						
Chip-to-Board						
For peripheral						
Buses(GHz)	1.87	2.26	2.49	3.01	4.0	7.1

Source

ITRS2001Edition

Calculated result of required line width

3600 pin count FC-package needs 8.3um line width by 4layer, or 10.7um line width by 5layer.

Motivation

Why do we conduct this study?

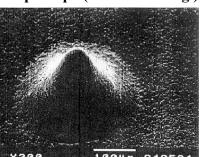
Package pin count overflow

interconnection delay

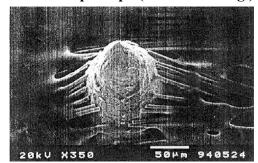
Development of Substrate

Line width under 10um for fine pitch

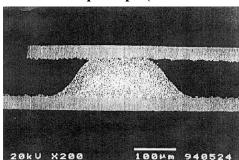
High performance at high frequency over 9GHz

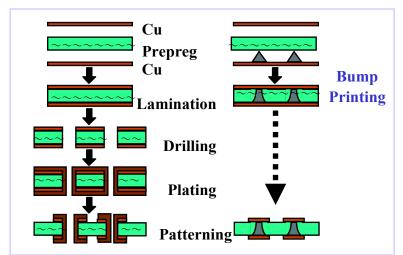

Based on new type of substrate

B²itTM technology


2, Concept of Development

We have developed B²itTM Printed Wiring Boards


B²itTM Bump Shape (After Printing)



B²itTM Bump Shape (After Piercing)

B²itTM Bump Shape (After Lamination)

- **①Great variety of multilayer structure and process.**
- **2**Stacked (Straight) via holes of great advantage to area I/O terminal devices.

3High cost-performance printed wiring board.

Process Comparison between B2itTM & standard PWB.

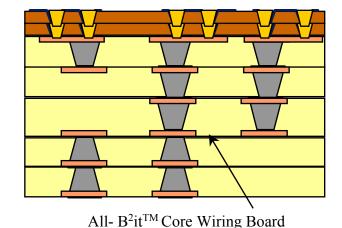
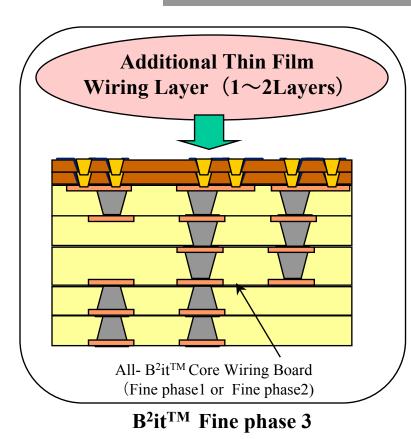
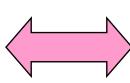

We propose new structure for next generation

Table 2 B²itTMDesign Rules

	Standard	Fine	Fine	Fine	
		Phase1	Phase2	Phase3	
Build up la	Build up layer				
L/S	-	-	_	Under	
				10/10	
Via	-	-	_	Under	
/Land				20/30	
				stack	
Core					
L/S	100	75	50	30	
	/100	/75	/50	/30	
Bump	300	150	100	100	
Diameter					
Pad	500	300	200	200	
Diameter					
Bump	600	400	300	300	
Pitch					
	ı		•	(22400)	


Combination
Additional Thin Film
Wiring Layer
(1~2Layers)


(Fine phase1 or Fine phase2)

(um)

B²itTM Fine phase 3 Concept

Equal Wiring Network

Conventional Plugged

Double Side Wiring Board

900pin FC0.15 L/S=8.3/8.3

Fan out 2Layer

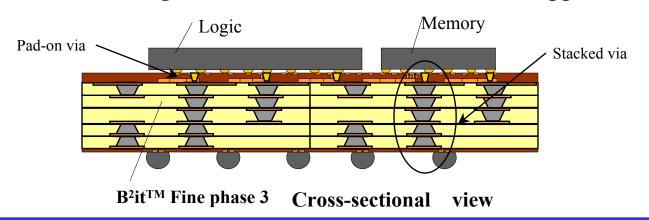
900pin FC0.15 L/S=25/25

Repetitions of Process

Low Yield

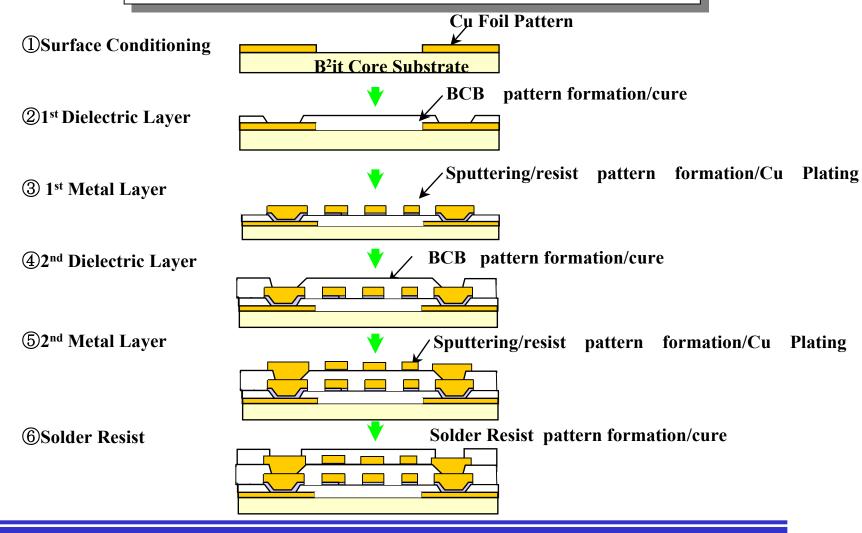
Plugged Core

Fan out 7Layer

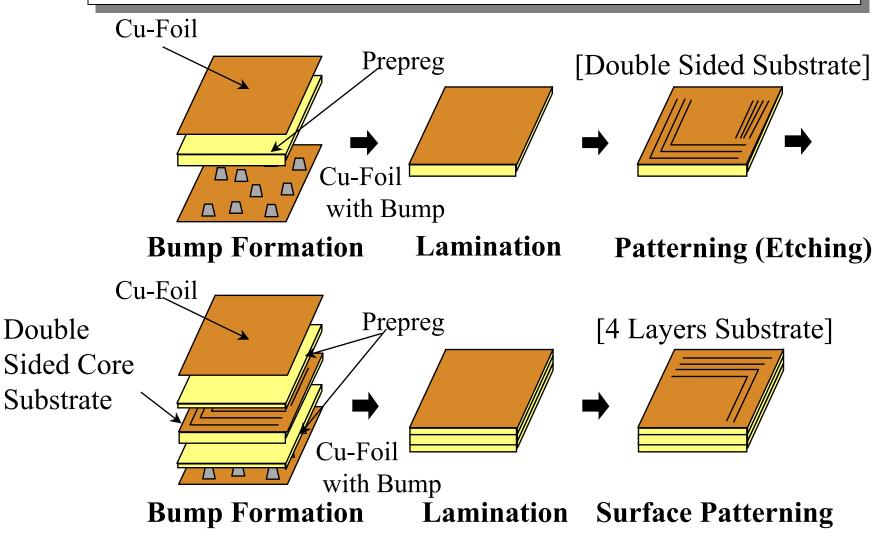

Features of B²itTM Fine phase 3

- 1, High-Performance \Rightarrow High speed transmission over 9GHz
- 2, Fine wiring, high density, precise

⇒L/S=Under10um/10um, V/L=Under20/30um stacked Straight Via (Stacking Via) holes are available.


3, Cost-performance

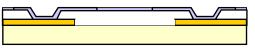
 \Rightarrow B²itTM Fine phase 3 substrate can be applied to all kinds of devices with grid I/O terminals . SIP is best application.



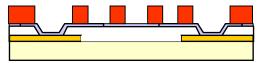
3, Fabrication Process

Process of B²itTM Fine phase 3

B²itTM Core substrate Manufacturing Process

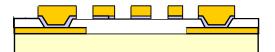

Reliability Test Results

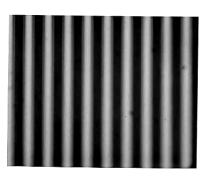
No	Item	Condition	Criteria	Result
1	Peel Strength	Peeling Speed 500mm/min	1.4kN/m(1.43kgf/cm)	OK
2	Soldering Endurance	260°C, 20sec & 288°C, 10sec	Resistivity Changing Ratio less than 10%	ОК
3	Insulating Voltage	DC500V, 60sec	No damage	ОК
4	Temperature Humidity Cycle	25°C⇔65°C∕90~98% 10Cycle(240H)	Insulating Resistance more than $5 \times 10^7 \Omega$	ОК
5	High Temperature High Humidity Bias	85℃/85%、DC12V&60V 500H	Insulating Resistance more than $5 \times 10^7 \Omega$	ОК
6	Temperature Cycling	-65°C (30min) ⇔125°C (30min) 1000cy	cResistivity Changing Ratio less than 10%	ОК
7	Hot Oil (Thermal Shock)	260°C (10sec) ⇔20°C (20sec) 100Cycle	Resistivity Changing Ratio less than 10%	OK
8	Pads Pull Strength	90° Pull head Speed :10mm/min	10N/mm ²	ОК
9	High Temperature Operation	100℃、0.3A、1000H	Resistivity Changing Ratio less than 10%	ОК
10	HAST	130℃/85%、DC10V、100H	Leak Current less than 10 ⁻¹⁰ A	ОК
11	Bending	±10% Bending 100 Cycle	Resistivity Changing Ratio less than 10%	ОК
12	Corrosion Gas	H2S: 0.1ppm, SO2: 0.5ppm 12V, 500	H nsulating Resistance more than $5 \times 10^7 \Omega$	ОК


Fine wiring technology

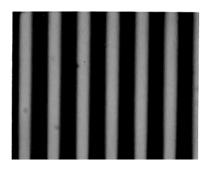
Sputter-semi-additive method

(1) Sputtering thin metal

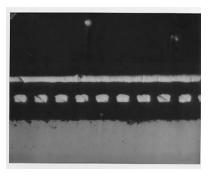

(2) Resist formation

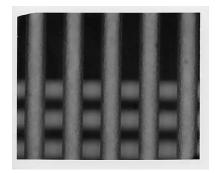


(3) Filled plating

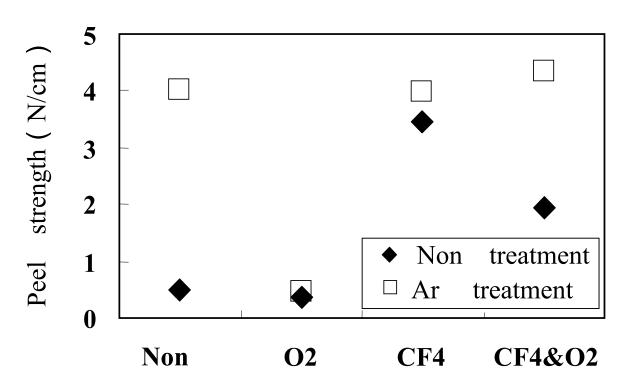


(4) Remove resist and thin metal



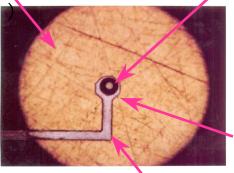

(a) L/S=6um/4um (3 σ = 0.46 u m)

(c) L/S=8um/7um $(3 \sigma = 0.53um)$



(b) L/S=6um/4um profile o f 2Layer

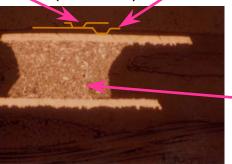
(d) L/S=11 u m/9 u m (3 σ =0.41um)


Treatment effect before sputtering

Pre-treatment surface of insulator by dry etching gas

Photo Via on B²itTM Core

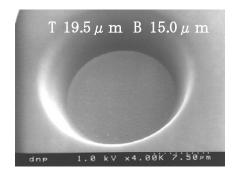
Core B²itTM Land (dia.400um Via Diameter 30um

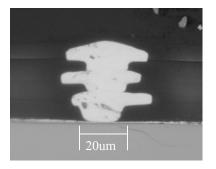

Land Diameter

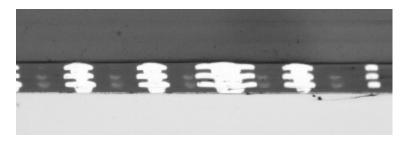
60um

Line Width 30um

Interconnection Over View

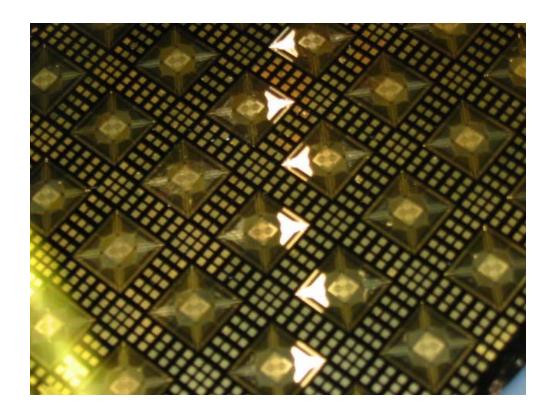

Photo Via (dia30um) L/S: 30/30um




 B^2it^{TM} Bump (dia.200um)

Interconnection Cross Sectional View

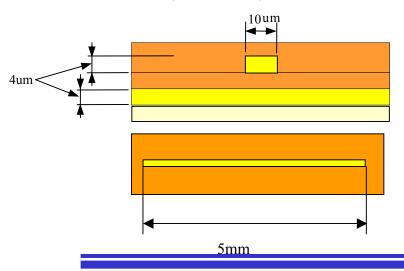
Filled via technology

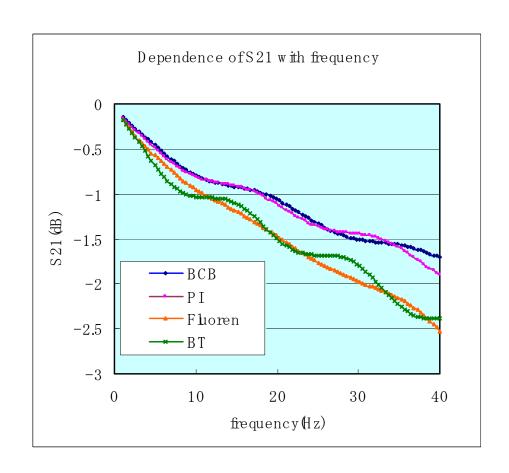


Via/Land=20um/30um stacked structure

Appearance of a prototype

4, Electrical Characteristic

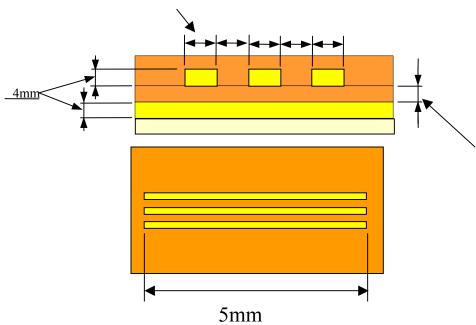

Simulation result of transmisson characteristic

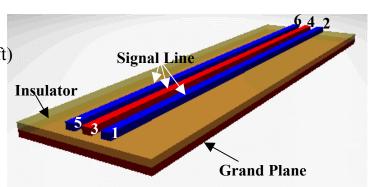

Simulator; HFSS(Ansoft) High frequency stress simulator

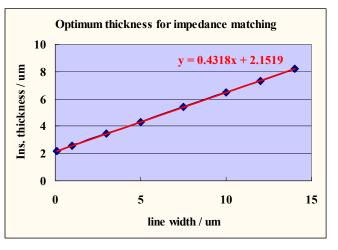
Model: Microstlip line with cover layer

Simulation structure

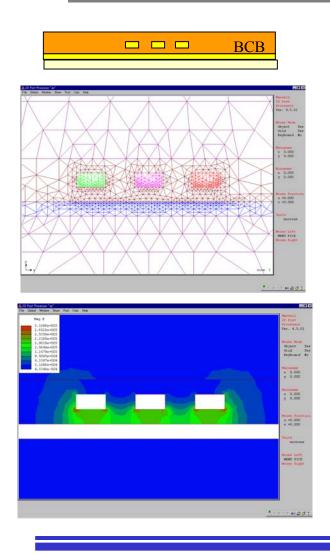
Insulator	3	$tan \delta$
BCB	2.7	0.0009
PI	3.2	0.0018
Fluorene	3.2	0.029
BT	4.2	0.012

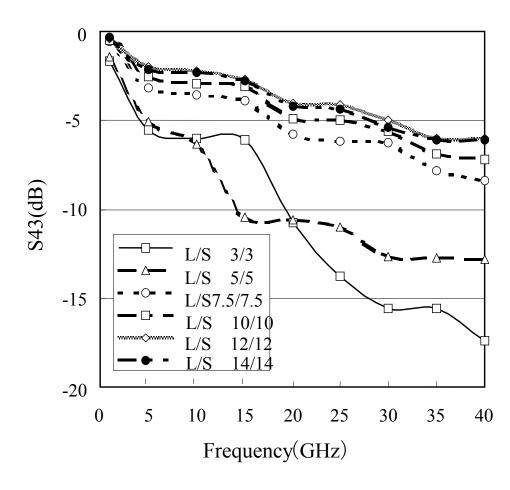


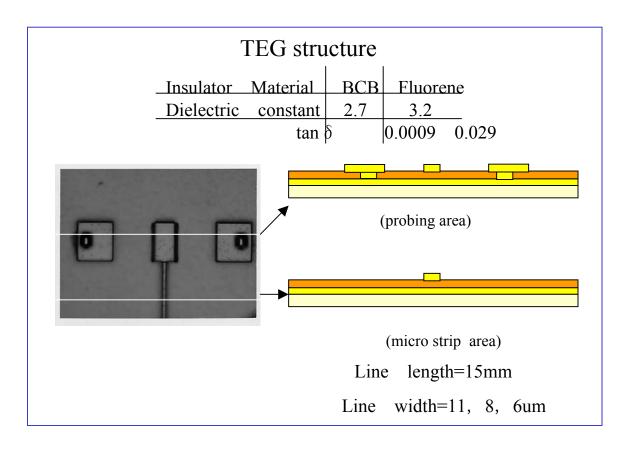

Simulation structure for evaluation of crosstalk


Simulator:

HFSS; High Frequency strucre simulator (Ansoft)

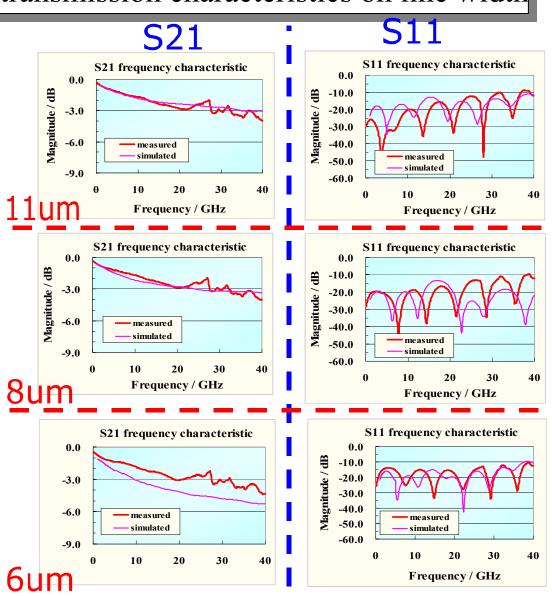

L/S=3/3, 5/5, 7.5/7.5, 10/10, 12/12, 14/14um



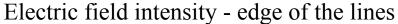

The dependence of insert loss on crosstalk of contiguity wiring

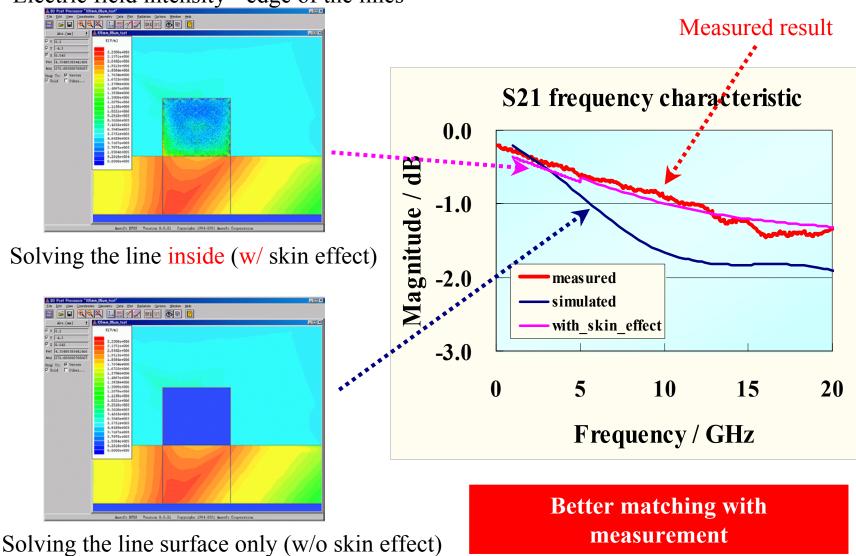
TEG structure for measurement of S-parameter

S-parameter measured using network analyzer, HP8722ES which made from Agilent technology


The dependence of transmission characteristics on line width

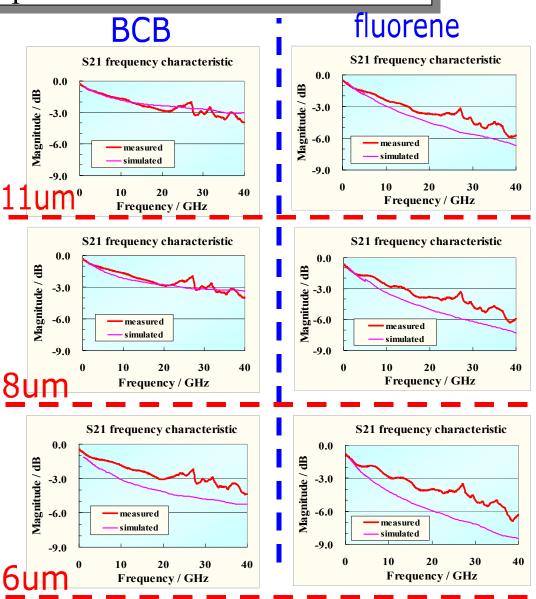
Line width 6um, 8um, 11um


line length: 15mm


insulator: **BCB**

A transmission characteristic does not become worth even if line width becomes small.

Comparison of measurement and simulation


Comparison of BCB and Fluorene

 S_{21} (insertion loss)

Line width 6um, 8um, 11um

line length: 15mm

insulator: BCB / fluorene

5, Summary and future plan

- 1, Very fine pitch Cu conductors with BCB on B²itTM core laminate was developed. The minimum pitch was 10um (L/S=6 /4). Filled plating process was possible for 20um via diameter
- 2, Cu conductors with BCB has excellent high frequency characteristic, it was –3dB in 16GHz.

In case of single line, it does not become worth even if line width becomes small. However, when the pitch became small at 10um or less with contiguity wiring, transmission loss becomes large owing to the crosstalk.

- 3, As a optimal design rule of a the fine wiring layer, pitch is 15 um (L/S=7.5 / 7.5), and 20 um of diameters filled via are the optimal designs, and high density and high-speed substrate, $B^2 it^{TM}$ fine phase 3 was developed.
- 4, The reliability of interconnection has not conducted yet. We plan to systematic and detailed reliability tests in next stage. We will be sure that it becomes advantageous solution for a high-density and high-speed next-generation package.