

November 6th, 2002 SATOSHI MAEZAWA PRINTED CIRCUIT BOARD BUSINESS UNIT MATSUSHITA ELECTRONIC COMPONENTS CO., LTD. Panasonic

CONTENTS

- (1) Introduction
- (2) Key Technology and Features
- (3) Expansion to a Package Substrate
- (4) New Any Layer IVH Structure PWB
- (5) Development Roadmap

INTRODUCTION

DOWNSIZING & WEIGHT REDUCTION FOR SEMICONDUCTORS

	1990	□ 2000			2005
Semiconductor	100MHz/100pin	1 GHz/600pin		5GHz/1200pin	
Semiconductor Package	OFFP	Finer- Multiple Pin	0.5CSP	0.25CSP	SIP
Structure	Wire-Bonding	×	Flip-Chip	Substrate	Flip-Chip

THE EVOLUTION OF PWB

FEATURES OF ANY LAYER IVH STRUCTURE PWB

COMPARISON WITH THE MULTI-LAYER STRUCTURE

Through-hole

Cannot be mounted on hole)

\$urface can be fully utilized)

- Downsizing & High density mounting
- Easily Designed
- Ideal for high-speeded applications

DESIGN FREEDOM WITH ANY LAYER IVH STRUCTURE PWB

HDI

Any Layer IVH Structure

Conventional Through Hole Structure Any Layer IVH Structure

Any Layer IVH Structure

DESIGN SIMULATION EXCERCISE

OBJECTIVE: To compare the wiring capabilities of **Any Layer IVH structure PWB** with **HDI** for connecting between 2.0.5mm pitch CSPs

SIMULATED LAYER TRACES

Any Layer IVH structure PWB Performance

	Wiring	Wiring	Wiring
	Alea	Length	IIIIe
HDI	100	100	100
Any Layer IVH structure	58	68	11

*All values calculated based on the overall layers.

KEY TECHNOLOGY AND FEATURES

ALIVH CONCEPT AND KEY TECHNOLOGY

ALIVH MANUFACTURING PROCESS

SPECIFICATIONS & CHARACTERISTICS OF ALIVH

Base material		Non-woven aramid fabric-epoxy
No. of layers	Layer	max. 10
Thickness	mm	6-layer: 0.75(min.0.60) 8-layer: 0.95(min.0.80)
Copper foil	μ m	18(min 12): internal layer 18(35: in case of copper plating): external layer
Conductor width / Conductor space	μ m	Standard 100/100(min 60/70)
Via diameter	μ m	200 (min 150)
Land diameter	μ m	400 (min 300)

	Unit	ALIVH	FR-4
Density	g/ml	1.4	1.9
Dielectric constant (at 1GHz)		3.7	4.4
Tg (DMA method)	°C	198	130
Coefficient of thermal expansion	x10 ⁻⁶ K ⁻¹	6 to 10	15

EXPANSION TO A PACKAGE SUBSTRATE

SPECIFICATIONS OF ALIVH FOR BARE CHIP MOUNTING

High Reliability at Package Level

High connection reliability for bare chip mounting

- JEDEC > Level II
- Thermal Cycle (–65/150°C) 2000cyc passed
- PCT (121°C, 2atm) 500hrs passed

Ideal for High Speed

Uniform specification throughout all layers for better impedance control

- Dielectric Constant 3.7(1GHz) to 3.6(10GHz)
- High Thickness Accuracy $3\sigma = 6.6$ /100 um layer thickness
- Short wiring length, strengthened ground and power plane

due to Any Layer IVH Structure

BARE BOARD RELIABILITY : HARDNESS & CO-PLANARITY OF ALIVH

Barcall Hardness

Surface Co-planarity

High Hardness at High Temperature

- Low power loss when heat and ultrasonic are applied
- No dimensional changes

Co-planarity < 10um/10x10mm sq.

• Provide a smaller height disparity between connection planes so that the pressure applied during flip chip mounting can be smaller

EXAMPLE OF THE SEMICONDUCTOR PACKAGE STRUCTURE

WIREBONDING PULL TEST METHOD

WIREBONDER: Shinkawa UTC-245BI-C2-07

Test Parameters:

- 2 different test wire length:
- x = 1.0mm, 1.5mm

Pull Test Condition:

- Pull force shall be applied at the wire's centre at point C.
- Pull speed shall be at approx. 0.5mm/s

Passing Criteria:

- Pull strength shall not be less than 3-gram.
- Failure mode shall not occur on the joint interface at points A or E.

ITEM	UNIT	1st Bond	2nd Bond	
Application time	ms	20	50	
Ultrasonic Power	W	100	180	
Force	gf	70	120	
Table Temperature	degC	150		
Au Wire Diameter	um	25		
Capillary	ADAMANT AD-2N-43L			

WIREBONDING PULL TEST RESULTS OF ALIVH

PACKAGE RELIABILITY : SCOPE OF EVALUATION

PACKAGE RELIABILITY : EVALUATION CONDITION

SOLDER FLIP CHIP

	90%Pb; 8%Sn; 2%Au (High temp solder)
SOLDER BUMP	96.2%Sn; 2.5%Ag; 0.8%Cu (Pb-free solder)
PWB	□15mm ALIVH-B (4 and 6-layer)
	□10mm Area Array TEG Chip
	(400um pitch×265 pads)
UNDERFILL RESIN	2 types (see below)

ACF RESIN	2 types (see below)
PWB	□15mm ALIVH-B (4 and 6-layer)
IC CHIP	□10mm Peripheral TEG Chip (160um pitch×208 pads)

UNDERFILL RESIN		Units	А	В
Curing Condition		°C	150 (20mins)	100(1hr) +150(1hr)
Adhesiven	ess	Pas/25°C	40	10
Gel Time		Pas/25°C	40	120
T _q (TMA)		°C	137	130
CTE	α1	ppm	32	32
	α2	ppm	120	-
Modulus of Elasticity		GPa	9	9
Bending Strength		MPa	140	130
Moisture Absorption		wt%	1.2	-

ACF		Company S	Company H
Filler Content (v	wt%)	50	20
Τ _α (° C)		170	173
E1 (Mpa)	40°C	4	2.4
E2 (Mpa)	150°C	1.7	0.7
α1 (ppm/°C)	40 - 100°C	27	59
α2 (ppm/°C)	120 - 140°C	64	95
Moisture Absor	ption	1.3	1

PACKAGE RELIABILITY : ITEMS TO BE EVALUATED

ITEMS FOR RELIABILITY TESTS

ITEM TO BE EVALUATED	РСТ	THERMAL CYCLE	Temperature & Humidity
Pre-Treatment	JEDEC Level III	JEDEC Level III	JEDEC Level III
Condition	(121°C, 2atm, 100%) × 300hrs	(-65°C for 30mins/ 150°C for 30mins) × 1000hrs	(85°C/85%RH) × 2000hrs

*JEDEC Level III: 30°C, 60%×192hrs \rightarrow 3 times reflow (Peak temp: 220°C)

Measured resistance includes wiring resistance of PWB, via resistance of all layers, resistance of bonding connection, and wiring resistance of IC.

PACKAGE RELIABILITY : SOLDER FLIP CHIP MOUNTING

PACKAGE RELIABILITY : SOLDER FLIP CHIP MOUNTING PROCESS

PACKAGE RELIABILITY : ACF MOUNTING

PACKAGE RELIABILITY : ACF MOUNTING PROCESS

PACKAGE RELIABILITY : EVALUATION RESULTS

Method	Structuro	Samplo	Reliability T	Reliability Test R		Results	
Method	Structure	Sample Layers Co		ers Count		4	
			Moisture Absorbed	ΗT	Pass	Pass	
	resin LSI		JEDEC Level III	LF	Pass	Pass	
	Solder Dump		PCT : 121℃,	ΗТ	Pass	Pass	
Solder			2atm, 100%, 240brs	LF	Pass	Pass	
FC	ALIVH	1	T/C : -65 to 150℃,	ΗТ	Pass	Pass	
			Dry, 1000cycles	LF	Pass	Pass	
	10mm ² Area Array TEG Chip	s (400um Pitch × 265 pads)	TH : 85℃, 85%,	ΗТ	Pass	Pass	
	High Temp Solder(HT) / Lea	ad Free Solder (LF) Bump	2000hrs	LF	Pass	Pass	
	ACF LSI		Moisture Absorb Reflow Test JEDEC Level II × 5 t	ed times	Pass	Pass	
ACE	Au bumpo	11 14	PCT : 121℃, 2at 100%, 168hrs	tm,	Pass	Pass	
			T/C : -65 to 150℃, Dry, 1000cycles		Pass	Pass	
	10mm ² Peripher (160um Pitch >	al TEG Chip, < 208 pads)	TH : 85℃, 85% 2000hrs	%,	Pass	Pass	

NEW ANY LAYER IVH STRUCTURE PWB

DEVELOPMENT CONCEPT WITH FR-4 MATERIAL

	Aramid (ALIVH)	FR-4 (ALIVH-G
Tg (Heat Resistant)	\bigcirc	\bigcirc
Dielectric Constant	\bigcirc	\bigcirc
Weight (Density)	\bigcirc	\bigtriangleup
Surface Mechanical Strength	\bigtriangleup	\bigcirc
Rigidity	\bigtriangleup	\bigcirc
Halogen Free	\bigtriangleup	\bigcirc
Moisture Absorption	\bigtriangleup	\bigcirc
Cost	\triangle	\bigcirc

LAYER STRUCTURE COMPARISON

WOVEN GLASS CLOTH FOR NEW ANY LAYER IVH STRUCTURE PWB

- $A \cdots Glass rich$
- B···Epoxy rich

Conventional Type (Opening Filament Fabrics)

Development Type (Flatten Cloth)

IMPROVEMENT OF LASER DRILLING CONDITION

Laser Drilling Condition

COMPARISON OF CONNECTION MECHANISM

COMPARISON OF PEEL STRENGTH

• BUILD-UP: HALOGEN FREE TYPE

COMPARISON OF PIN KNOCK-DOWN STRENGTH

- SPECIFICATIONS OF TEST VEHICLE
- LAYER COUNT: 6 Layers
- SURFACE TREATMENT: Electroless Au Plating
- LAND GEOMETRY: 2mm sq.
- BUILD-UP: HALOGEN FREE TYPE

• TEST METHOD

- Solder the pin to a predetermined land on the test vehicle.
- Set the test vehicle with the soldered pin on the clamping vice of the test machine.
- Set the longitudinal speed to 50mm/min on the pin and measure and record its strength after the pin is knocked down.

SCHEMATIC OF TEST SETUP

COMPARISON OF BALL PULL STRENGTH

SPECIFICATIONS OF TEST VEHICLE

- LAYER COUNT: 6 Layers
- SURFACE TREATMENT: Electroless Au Plating
- LAND GEOMETRY: 0.55mm sq.
- PSR APERTURE: 0.45mm dia.
- BUILD-UP: HALOGEN FREE TYPE

.

- TEST METHOD Place a solder ball (0.76mm dia) on a pre-determined land and reflow solder test vehicle with a solder ball (at peak temp. 240degC).
- Heat the attached solder ball before puncturing it with the probe. Under cool air, lift the probe upwards at a longitudinal speed of 300um/s.
- Measure and record the pull strength and its failure mode after separation.
- SCHEMATIC OF TEST SETUP

COMPARISON OF BENDING STRENGTH

PLOTTED DATA OF STRESS vs DEFLECTION

• ELASTIC MODULUS (GPa)

(n=5 each)

	6 Layer	8 Layer	10 Layer
ALIVH	12.0	12.4	12.1
ALIVH-G	23.7	23.1	23.7

• SPECIFICATIONS OF TEST VEHICLE

- LAYER COUNT: 6, 8, 10 Layers
- STRUCTURE: Base Material only (No copper foil layers)
- BUILD-UP: HALOGEN FREE TYPE

• TEST METHOD

- Set the test vehicle 20mm apart between the supports.
- Set the longitudinal speed of 20um/s at the centre of the test vehicle between the supports. Measure and record the corresponding stress and deflection.
- Determine the Elastic Modulus at 0.3% deflection using its corresponding stress.
- SCHEMATIC OF TEST SETUP

MOISTURE ABSORPTION RATIO

DEVELOPMENT ROADMAP

ALIVH DEVELOPMENT ROADMAP

