
A New Line Balancing Method Considering Robot Count and Operational Costs in

Electronics Assembly

Ryo Murakami, Sachio Kobayashi, Hiroki Kobayashi and Junji Tomita

Fujitsu Laboratories

Nakahara-ku, Kawasaki-shi, Kanagawa, Japan

Abstract

Automating electronics assembly is complex because many devices are not manufactured on a scale that justifies the cost of

setting up robotic systems, which need frequent readjustments as models change. Moreover, robots are only appropriate for a

limited part of assembly because small, intricate devices are particularly difficult for them to assemble. Therefore, assembly

line designers must minimize operational and readjustment costs by determining the optimal assignment of tasks and resources

for workstations. Several research studies address task assignment issues, most of them dealing with robot costs as fixed

amount, ignoring operational costs. In real factories, the cost of human resources is constant, whereas robot costs increase with

uptime. Thus, human workload must be as large and robot workload as small as possible for the given number of humans and

robots. We propose a new task assignment method that establishes a workload balancing that meet precedence and further

constraints. The following must be determined before using our method: which tasks robots can perform, and which

workstations robots are assigned to. We assume that humans can perform every task and consider the constraints that restrict the

tasks robots can perform. By applying our method to several case studies, problems involving 20 humans were solved within

1 minute and 1% dispersion. These results indicate that our method can be used in actual factories where a short-term planning

period corresponding to frequent production fluctuations is required. We also applied our method to real assembly data for

laptops manufactured by our company and obtained task assignment that reduces the operational costs by 30%. This suggests

that our method can contribute to promoting the automation of electronics assembly by demonstrating its cost reduction

potential.

Introduction

In product development, the current global market continuously pressures manufacturers to compete with competitors from

around the world. Manufacturers must speed up the time to market while minimizing manufacturing costs to ensure that their

products remain competitive [1]. Automating assembly processes and optimizing assembly lines are essential to survival in

the electronics market.

Skilled robotic systems are key components in fully automated assembly processes and necessary for highly efficient

production. In electronics assembly, however, robots are available to a limited part of assembly because small, intricate devices

are particularly difficult for robots to assemble. Moreover, many devices are not produced on the scale necessary to justify the

cost of setting up robotic systems that need frequent readjustments as models change. Therefore, which tasks robots handle

must be decided very carefully.

Assembly lines consist of sequences of workstations performing repetitive sets of tasks typically for the industrial production

of high-quantity commodities; they are even gaining importance in low-volume production of customized products. Because

of the high investment and operational costs involved, the design of assembly lines is of considerable practical importance

[2]–[5]. A number of crucial decisions must be made in assembly line design, including product design, process selection, line

layout configuration, line balancing and resource planning [6]–[8]. The first two decisions, product design and process

selection, provide information about the work that must be performed on the assembly line, that is, a set of indivisible tasks

related by constraints. The main sources of these constraints are technological, economic and environmental in nature. Which

tasks robots can handle is a particularly important constraint in electronics assembly. The next decision deals with choosing the

line layout (straight, U-shaped, with circular transfer, asymmetric, etc.). This defines how workstations will be situated on the

line as well as what flow directions and rules are used. Finally, the final two crucial decisions determine the optimal assignment

of tasks and resources (human, machine, robot, etc.) to workstations. This is a complex combinatorial problem whose solution

determines, for the most part, the efficiency of the line. In addition to designing a new line, operational lines must be

redesigned periodically or after changes to the production process or production program.

There are relatively few studies that address task assignment problems with variations of resources [9]–[15], although many

recent publications looking at the simple assembly line balancing problem exist [16]–[27]. Ref. [15] is one of the few studies

that deal with an assignment problem for manual and robotic assembly mixing lines. Although the authors minimize total line

costs under some constraints, including robot constraints, they deal with robot costs as fixed amount, ignoring the operational

costs. The longer a robot operates, the higher its costs because of power consumption. By contrast, the costs of human resources

are constant, except overtime pay. Thus, the human workload should be as large and the robot workload as small as possible for

the given number of humans and robots. We propose a new task assignment method that establishes the workload balancing,

addressing precedence and further constraints. This represents a major improvement in real factories.

Methodology: Definition of Problem

In [15], the authors assign tasks as well as resources to workstations for hybrid manual and robotic assembly mixing lines. Here,

we assume that the resource assignment, i.e. which workstations the robots are assigned to (humans assigned to the remaining

workstation), is established. This is because a desirable assignment of robots to workstations is decided depending on the given

environment and conditions. For example, robot positions are rarely changed once robots are set up because readjustment of

robots is time-consuming and costly. Our method can compute an optimal assignment more quickly by focusing on task

assignment.

In our task assignment problem, we consider two kinds of constraints: precedence and robot. There are order relationships

among the tasks, which are illustrated in a precedence graph such as Figure 1, where an arc exists if task cannot be

started before the end of task . Precedence constraints are the restrictions on task when assigned to the workstation

allocated to task or subsequent tasks. Robot constraints represent the tasks that the robot can perform. Note that we do not

impose an upper limit on each workstation processing time , while most line balancing studies use the assembly time for a

product, called the cycle time , as the upper limit. This reflects the fact that overtime work recovers some operational delays

in real factories.

Figure 1 – Example of Precedence Graph

Here, we introduce the objective of our problem. We propose two objectives corresponding to the number of resources in the

line.

The first reflects our idea that humans should be assigned to as many tasks as possible. We use the objective

(1)

when there are enough resources to satisfy for any workstation. Here, is the subset of the workstations to which

humans are assigned. The -th workstation processing time is the sum of the duration of the tasks assigned to the

workstation:

(2)

where is the subset of the tasks assigned to the -th workstation. Each workstation time approximates the cycle time by

minimizing this objective. Since wages are independent of their workstation times, unless they exceed the cycle time ,

assigning as many tasks as possible to humans maximizes line efficiency. Such assignment minimizes robot operating time.

We assume that the total operational cost are proportional to the robot operating time :

(3)

Thus, we minimize instead of .

The second objective is to perform conventional assignments. When the given resources are so few or the given cycle time is

so tight that the inequality for all the workstations cannot be satisfied, the workstation loads should be equalized to

finish work as soon as possible. Thus, we use the objective

(4)

which maximum is operated for all workstations, including the robot workstations. Note that a variance such as

(5)

(: the number of workstations) is inapplicable here. Generally, it takes robots more time to complete a task than humans.

Therefore, induces unbalanced workstation times between humans and robots, in which humans are assigned to more tasks

than robots.

Our task assignment problem is defined as follows:

Given a set of tasks, a set of the duration and robot availability for each task, and resource assignment to each workstation,

and given a cycle time and possible precedence constraints, we try to find assignment of tasks to workstations on the line so

that:

 No precedence constraints are violated;

 No robot constraints are violated; and

 The following objectives are met:

 If there are enough resources to satisfy for any workstation, each human processing time approximates the

cycle time as close as possible.

 If the given resources are so few or the given cycle time is so tight that the inequality for all the workstations

cannot be satisfied, the variance of a set of workstation times is as low as possible.

Methodology: Algorithm

Here, we introduce an algorithm to solve our task assignment problem. We adopt an approximate approach: metaheuristics.

There are so many important criteria for making task assignments that are difficult to represent in the objective that the

difference between the exact and approximate solutions is inconsequential. The approximate solution is obtained more

quickly. Moreover, some solutions obtained from metaheuristics corresponding to the local minima of the objective are often

useful for manual selection based on the above criteria.

Our algorithm requires the following input:

 Desired number of workstations

 Set of IDs for the robot-assigned workstations

 Desired cycle time

 Durations of each operation

 Precedence constraints between operations

 Robot availability for each operation

Our method is based on a tabu search for a constraint satisfaction problem. We propose the following algorithm to generate

possible solutions to the problem:

1. Generate the initial assignment of tasks to the workstations using first-fit heuristics.

2. Exchange two tasks, or move a task to another workstation randomly.

3. Count the number of tasks violating the constraints, and calculate the objective.

4. Stochastically undo the changes based on the metaheuristics (tabu search).

Data

We chose a laptop as an industrial case study. It is manufactured on an assembly line in a factory. Table 1 presents the data of

this case study. The grayed tasks are robot available. The durations for humans and robots are given for these tasks. The

predecessors of each task are shown in the Precedents column.

We also used an artificial data set containing 1000 tasks to confirm the scalability of our method. Each task has random

duration and precedents. Each duration is a uniform random number. For the precedents, we used two normal

random numbers that represent a group number and an order in the group. Error! Reference source not found. shows

the precedence graph generated from a set of group numbers and orders . An arc exists based on orders in the group,

Task Human Robot Precedents Task Human Robot Precedents Task Human Robot Precedents

1 1 46 4 45 91 6 90

2 1 47 4 30,46 92 6 6 91

3 2 2 48 4 46 93 7 92

4 3 49 5 47 94 5 93

5 5 3 50 4 6 49 95 2

6 1 3 3 51 5 43 96 7 86,94,95,76

7 3 6 6 52 5 5 51,44 97 6 10 96

8 3 6 6 53 4 98 3 97,68

9 4 6 54 2 5 13,53 99 4 95

10 3 5 9 55 4 32 100 6 95

11 5 6 6 56 1 54,55 101 7 20 68

12 7 6 11 57 5 13 102 4 98

13 5 58 2 8 57 103 6 6 46

14 3 6 5 59 4 8 32 104 6 98

15 2 6 12 60 2 5 105 8 98

16 1 14,15 61 2 6 60 106 4 104

17 2 4 16 62 3 61 107 10 106

18 1 17 63 6 62,13 108 4 107,68

19 3 18 64 2 5 63 109 7 108

20 1 19 65 2 5 13,31 110 3 102

21 3 15 20 66 2 5 54 111 6 102

22 1 21 67 4 10 47 112 12 109

23 3 3 68 5
56,66,42,38,36,59,58,

52,23,64,67,65,50,48
113 4 35

24 1 5 69 6 114 5 10 113

25 4 24 70 4 69 115 5 5 114

26 4 25 71 4 70 116 3 68

27 4 72 1 71 117 5 5 68

28 1 2 26 73 4 72 118 4 103,82,81,110,117,116

29 3 28,27 74 5 69 119 3 118

30 2 5 29 75 5 120 10 95

31 2 3 76 3 6 75 121 7 98,111,112,115,101

32 3 22,13,8,10,7 77 5 75 122 2 121,119,120,99,100

33 3 6 78 2 75 123 2

34 8 33 79 5 73,77,78 124 8 13

35 10 4 80 5 125 3 5 13

36 6 6 81 9 68 126 2 122

37 3 32 82 5 5 68 127 7 15 126

38 4 37 83 6 10 79 128 1 127

39 2 32 84 5 10 79 129 3 128

40 6 15 39 85 6 83,74,84 130 3 122

41 5 10 39 86 3 85 131 3 130

42 1 40,41 87 3 80,84,83 132 7 5 75

43 7 34 88 5 87 133 1 129,132,125,131,124

44 3 43,32 89 5 88 134 1 133

45 2 90 2 89 135 1 134

Durations [s] for Durations [s] for Durations [s] for

Table 1 – Data on Laptop Assembly

and we assume that there is no arc between tasks belonging to separate groups. In Error! Reference source not found., for

example, task 1 has and task 2 has , and there exists an arc from task 1 to task 2. It is

possible for two or more tasks to have the same set as task 3 and 4 in this figure. No group and no order can occur

as and in this figure. Here, each group number is sampling from the normal distribution

whose mean and variance are and , respectively. On the other hand, each order is sampling from the

normal distribution whose mean and variance are and , respectively.

Note that we checked the balancing speed under the precedence constraints here. Thus, we assumed that all resources are

humans and ignored the robot constraints and unbalanced assignment using the objective .

Results

Here, we summarize the assignment results for the above data. Three robots were placed in the 1st, 4th and 7th workstations.

We showed assignment results using stacked bar charts, such as Figure 3 and Figure 4. The horizontal axis is the workstation

number, and the vertical axis is the workstation time. A bar corresponds to a task, and the number written in each bar shows

Figure 2 – Precedence Graph Generated from Group Numbers and Orders

which task corresponds to the bar. The height represents the duration of the task. The color of each box represents the robot

availability for the task; gray is available, and white is unavailable. In Figure 3 and Figure 4, the only available tasks are

assigned to the robot workstations, and the workstation times are well balanced except for the first workstation to which

assignment is restricted because of the precedence and robot constraints in this data. The precedence constraints are also

satisfied by all the tasks, although it is difficult to confirm this from the charts.

Figure 3 (a) and (b) show the results of conventional assignments using the objective for the number of

workstations , respectively. Their maximum workstation times are 72 and 63 s, respectively. When the cycle time is

nearly equal to 72 or 63 s, the assignment of Figure 3 (a) or (b) can be adopted, unless the number of workstations or resources

is restricted. When the cycle time is , for example, , are the number of workstations appropriate? If

Figure 3 – Charts of Assignment Using the Objective for (a) , (b)

Figure 4 – Chart of Assignment Using the Objective for s

overtime cannot be done, has to be chosen. The assignment of Figure 3 (b), however, is not appropriate because of

long idle times at human-assigned workstations.

Thus, our new assignment using the objective for is displayed in Figure 4. Here, the workstation times

for the humans are balanced around the cycle time . As a result, the total robot processing time for our assignment

(Figure 4) is 108 s, which is approximately 40% shorter than that of the conventional assignment’s 176 s (Figure 3 (b)). These

are the main results in this paper. Note that our method cannot determine which of the two assignments, Figure 3 (a) and Figure

4, is better. The number of workstations can be decided considering various factors in the line.

Finally, we checked the scalability of our method. We applied our method to the artificial data set under Data, changing the

number of workstations and measuring their calculation times, where each calculation stops when the standard deviation of a

set of station times reaches 1 s. Figure 5 (a) summarizes the results. The vertical axis is the calculation time, and the

horizontal axis is the number of workstations. Our method can finish the calculation within 1 minute when the number of

workstations is and within 20 minutes when the number of workstations is . Figure 5 (b) shows the

assignment chart for as an example of our calculation result. Each workstation time is well balanced.

Conclusions

In this paper, we presented a new method of handling an assignment problem for hybrid manual and robotic assembly mixing

lines. The method is based on a tabu search for a constraint satisfaction problem. The aim is to assign tasks to workstations,

each of which is occupied by either a human or a robot. The focus is on how to deal with the idle time of each workstation. By

assigning tasks to the workstations of humans so that no idle time remains, our method reduces the total processing time of

Figure 5 – (a) Relation between Calculation Time and Number of Workstations, (b) Assignment Chart for

robots by approximately 40% in the laptop case study presented. In the future, further research will be undertaken on

reassigning existing assembly lines in response to changes to the production process or production program.

Acknowledgments

This work was supported by the Grant-in-Aid of the New Energy and Industrial Technology Development Organization

(NEDO) of Japan (Project Code P15008).

References

[1] M. Padrón, M. de los A. Irizarry, P. Resto, and H. P. Mejía, “A methodology for cost‐oriented assembly line balancing

problems,” J. Manuf. Technol. Manag., vol. 20, no. 8, pp. 1147–1165, Oct. 2009.

[2] Ronald G. Askin and Charles R. Standridge, Modeling and Analysis of Manufacturing Systems. 1993.

[3] S. Y. Nof, W. E. Wilhelm, and H.-J. Warnecke, Industrial Assembly. Chapman & Hall, 1997.

[4] A. Scholl, Balancing and Sequencing of Assembly Lines. Physica-Verlag, Heidelberg, 1999.

[5] J. P. A. Dolgui, Supply Chain Engineering: Useful Methods and Techniques. Springer, 2010.

[6] A. Kimms, “Minimal investment budgets for flow line configuration,” IIE Trans., vol. 32, no. 4, pp. 287–298, 2000.

[7] G. W. Zhang, S. C. Zhang, and Y. S. Xu, “Research on flexible transfer line schematic design using hierarchical

process planning,” J. Mater. Process. Technol., vol. 129, no. 1–3, pp. 629–633, 2002.

[8] O. Battaïa, A. Dolgui, N. Guschinsky, and G. Levin, “A decision support system for design of mass production

machining lines composed of stations with rotary or mobile table,” Robot. Comput. Integr. Manuf., vol. 28, no. 6, pp.

672–680, Dec. 2012.

[9] S. C. Graves and D. E. Whitney, “A mathematical programming procedure for equipment selection and system

evaluation in programmable assembly,” Decis. Control Incl. Symp. Adapt. Process. 1979 18th IEEE Conf., vol. 2, pp.

531–536, 1979.

[10] S. C. Graves and B. W. Lamar, “An integer programming procedure for assembly system design problems,” Oper. Res.,

vol. 31, no. 3, pp. 522–545, Jun. 1983.

[11] R. E. Gustavson, “Design of cost effective assembly systems,” in C. S. Draper Laboratory Report, Cambridge, 1986, p.

2661.

[12] S. C. Graves and C. H. Redfield, “Equipment selection and task assignment for multiproduct assembly system design,”

Int. J. Flex. Manuf. Syst., vol. 1, no. 1, pp. 31–50, Sep. 1988.

[13] E. Falkenauer, “Solving equal piles with the grouping genetic algorithm,” pp. 492–497, Jul. 1995.

[14] J. Bukchin and M. Tzur, “Design of flexible assembly line to minimize equipment cost,” IIE Trans., vol. 32, no. 7, pp.

585–598, 2000.

[15] B. Rekiek, P. De Lit, F. Pellichero, T. L’Eglise, P. Fouda, E. Falkenauer, and A. Delchambre, “A multiple objective

grouping genetic algorithm for assembly line design,” J. Intell. Manuf., vol. 12, no. 5–6, pp. 467–485, 2001.

[16] A. C. Nearchou, “Balancing large assembly lines by a new heuristic based on differential evolution method,” Int. J. Adv.

Manuf. Technol., vol. 34, no. 9–10, pp. 1016–1029, Nov. 2006.

[17] S. B. Liu, K. M. Ng, and H. L. Ong, “Branch-and-bound algorithms for simple assembly line balancing problem,” Int.

J. Adv. Manuf. Technol., vol. 36, no. 1–2, pp. 169–177, Nov. 2006.

[18] O. Kilincci and G. M. Bayhan, “A P-invariant-based algorithm for simple assembly line balancing problem of type-1,”

Int. J. Adv. Manuf. Technol., vol. 37, no. 3–4, pp. 400–409, Mar. 2007.

[19] D. D. Sheu and J.-Y. Chen, “Line balance analyses for system assembly lines in an electronic plant,” Prod. Plan.

Control, Mar. 2008.

[20] U. Özcan and B. Toklu, “A new hybrid improvement heuristic approach to simple straight and U-type assembly line

balancing problems,” J. Intell. Manuf., vol. 20, no. 1, pp. 123–136, May 2008.

[21] C. Blum, “Beam-ACO for simple assembly line balancing,” INFORMS J. Comput., vol. 20, no. 4, pp. 618–627, Nov.

2008.

[22] R. Pastor and L. Ferrer, “An improved mathematical program to solve the simple assembly line balancing problem,” Int.

J. Prod. Res., vol. 47, no. 11, pp. 2943–2959, Jun. 2009.

[23] O. Kilincci, “A Petri net-based heuristic for simple assembly line balancing problem of type 2,” Int. J. Adv. Manuf.

Technol., vol. 46, no. 1–4, pp. 329–338, May 2009.

[24] W. Ho and A. Emrouznejad, “A mathematical model for assembly line balancing model to consider disordering

sequence of workstations,” Assem. Autom., vol. 29, no. 1, pp. 49–51, Feb. 2009.

[25] J. Bautista and J. Pereira, “A dynamic programming based heuristic for the assembly line balancing problem,” Eur. J.

Oper. Res., vol. 194, no. 3, pp. 787–794, May 2009.

[26] O. Kilincci, “Firing sequences backward algorithm for simple assembly line balancing problem of type 1,” Comput. Ind.

Eng., vol. 60, no. 4, pp. 830–839, May 2011.

[27] E. C. Sewell and S. H. Jacobson, “A branch, bound, and remember algorithm for the simple assembly line balancing

problem,” INFORMS J. Comput., vol. 24, no. 3, pp. 433–442, Aug. 2012.

A New Line Balancing Method Considering Robot
Count and Operational Costs in Electronics

Assembly

Ryo Murakami, Sachio Kobayashi, Hiroki Kobayashi and Junji Tomita

FUJITSU LABORATORIES LTD.

Contents

■ Introduction

■ Method

■ Results

■ Discussion

■ Conclusion

Contents

■ Introduction

■

■

■

■

Proceeding robotic automation is essential to reduce manufacturing
costs and win a place in the electronics market.

Robot Labor on Electronics Assembly Lines
■ Increasing due to improvement of robot costs and utilization

40,000 robotsIncreasing
Automotive

Electronics

Metal

Rubber

Food

Cosmetics

Worldwide annual supply

of industrial robots

Estimated worldwide annual supply

of industrial robots at year-end

Barrier of Robotic Automation: Different from Humans
■ Limitation of ability to do

 robot available only for 30% of total tasks in our laptop assembly
■ Difference of processing speed

 from almost same one to too slow one
Which tasks are assigned to robots, that is Line Balancing,
need to be carefully performed.

Robot Human
7.2 s 3.9 s

Average task time
in our laptop assembly

Twice slower

task 2 task 5

task 1

task 6

P
ro

c
e

s
s
in

g

T
im

e task 3

1st 2nd 3rd

task 4

Difficulty of Line Balancing
■ We must find the best assignment in enormous combinations

under some constraints.

 Each processing time balanced in the assignment
■ Experts manually make only good assignments.

 The room for improvement corresponding to $1M annual loss
in a factory as will be shown later

Automated high quality balancing in robot contained line is needed.

task 1 task 6
task 4

task 3
task 5

task 2

Precedence graph

: robot available

: unavailable

Robot count has been usually decided by a budget, but It is
impossible to get the answer with specified robot count in this method.

Previous Study - Rekiek et al. (1999)
■ Iteratively grouping tasks and generating all possible resource

combinations for the groups

 Robot count optimized by the generation

3. Selecting and regrouping

according to Grouping Generic Algorithm

task 1 task 6
task 4

task 3
task 5

task 2 : robot available

: unavailable

1. Grouping
2. Generating all possible

resource combinations

task 6

task 1

task 4

task 3T
im

e

task 2

1 2 3

task 5

task 3

task 6

task 1

task 4

T
im

e

task 2

1 2 3

task 5

Achieving line balancing with specified robot count

Our Approach

■ Solving the balancing problem as Constraint Satisfaction Problem:

 For specified resource order, assigning tasks so that the
constraints are satisfied and each processing time is balanced

1 2 3

Specified resource order

task 3

task 1 task 2

task 4

Assigning tasks so that:

• satisfying the constraints

• balancing each processing time

We collect all idle time into robots,
although the previous study remains it in human parts.

One More New Point: Effective Use of Idle Time
P

ro
c
e

s
s
in

g

T
im

e

1 2 3

Rekiek et al. (1999)
Cycle time

Idle time

P
ro

c
e

s
s
in

g

T
im

e

1 2 3

Our method No idle time

Idle time

collected

■ Cycle time: processing time par a product given by the top

 Highest priority: to save it, sufficient human count is secured.
■ Idle time: difference between processing time and cycle time

 Wasting human resources
 Saving robot operational costs and extending robot life time

Contents

■

■ Method

■

■

■

Problem Definition
■ Given:

1. Task information
2. Cycle time
3. Robot count

■ Find our idle time collecting assignment

 Any resource order is acceptable,
but humans are necessary and sufficient count.

g

T
im

e c

f

1 2 3

d

e

𝐶𝐶

b
a

Finding

3. Robot count

a b
c d e

f g

2. Task
information1. Cycle

time

T
im

e

𝐶𝐶

Given:
Task information

Cycle time

Robot count

Optimizing:
Human count

Task assignment

About Task Information

■ 3 properties required:

 Precedents
 Robot availability
 Task time

Task Precedents Robot
Availability

Task Time [s]
Human Robot

1 Unavailable 2

2 Unavailable 3

3 1 Available 7 10

4 1, 2 Unavailable 5

5 3, 4 Available 4 7

6 5 Unavailable 6

Robots’ task time required for available tasks

Idle Time Collecting Objective Function

b

c

T
im

e

a
f

g

1 2 3 4

d
e

𝐶𝐶 Max exceed
Max

idle b

c

T
im

e

a
f

g

1 2 3 4

d

e
𝐶𝐶 No exceed

Idle time

collected

b

c

T
im

e

a
f

g

1 2 3 4

d e
𝐶𝐶Max idle

Initial Middle Final

■ If both exceed and idle time of all humans can be minimized,
idle time is collected into robots. (if sufficient human count)

■ Thus, we adopted these values as the index to minimize, that is,
objective function.

 Actually, the objective include only the max exceed time and
the max idle time.

𝐶𝐶: Cycle time

Search Algorithm: Tabu Search

■ Generating initial assignment using heuristics, and repeating
possible local changes under tabus to minimize our objective

 Used heuristic: first fit
• often used for bin packing problems

 Used tabus: “resent moved 20% tasks must not move.”

d

T
im

e c

g

1 2 3

e

f

𝐶𝐶
a b

c d e
f g

b
a

d

T
im

e c

g

1 2 3

e

f

𝐶𝐶

b
a

d

T
im

e c

g

1 2 3

e

f

𝐶𝐶

b
a

Moving excepting “d”

1 2 3

...

Moving a taskInitializing

Contents

■

■

■ Results

■

■

Task Precedents Robot
Availability

Task Time [s]
Human Robot

1 Unavailable 1

7 6 Available 3 6

135 134 Unavailable 1

Used Data: an Industrial Case Study
■ Assembly data of a laptop, manufactured in a factory
■ Task count: 135 (robot available: 40)

■ Total task time by humans: 559 s
 Each task time is an Integer.

Not minimum

human count

T
im

e

1 2 3 4 5

T
im

e

1 2 3

T
im

e

1 2 3 4

Not

0 objective

1. An optimal assignment according to robot count

 minimum human count as well as 0 objective
2. Balancing performance compared with manual

 How much our objective can be reduced
• Here human count and resource order was fixed

for comparison.

Overview of Results

0 objective & minimum human count

Given:
Task information

Cycle time

Robot count

Optimizing:
Human count

Task assignment

Problem Definition

0

5

10

15

20

0 1 2 3 4 5

7 humans
8 humans
9 humans

O
b

je
c
ti
v
e

 [
s
]

(E
x
c
e

e
d

 T
im

e
)

Robot Count

0 objective
(neither exceed

nor idle)

: Available

: Unavailable

2 Robots and 8 humans

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
]

■ Cycle time: 60 s Robot count: from 0 to 5

1. An Optimal Assignment According to Robot Count

We specified that an optimal assignment is that of 8 human for robot count ≥ 2
and that of 9 human for robot count =1.

■ Left figure: relation between our objective and robot count for some human count

 7 humans: finite objective for any robot count
 8 humans: 0 objective for robot count ≥ 2
 9 humans: 0 objectivefor robot count ≥ 1

Always finite

0 for R.C. ≥ 2

0 for R.C. ≥ 1

2. Balancing Performance Compared with Manual
■ Condition: 61 s cycle time for 9 humans and 1 robot

■ Manual: no exceed, but idle time in human parts

■ Our method: 0 objective (neither exceed nor idle)

Order

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
]

Manual No exceed, but ... : Available

: Unavailable

Causing 30% extra robot time

Order

Our Method

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
]

0 objective
(neither exceed

nor idle)

30% extra
robot time

Our method can automate high quality assignments.

2. Balancing Performance Compared with Manual
■ Condition (strict): 58 s cycle time for 9 humans and 1 robot

■ Manual: 3 s exceeded

■ Our method: 0 objective (neither exceed nor idle)

5% of extra
labor cost

Order

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
]

Manual

Order

Our Method

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
] : Available

: Unavailable

0 objective
(neither exceed

nor idle)

Causing an extra cost for ⁄𝟑𝟑 𝒔𝒔 𝟓𝟓𝟓𝟓 𝒔𝒔 ≃ 𝟓𝟓%overtime working

Contents

■

■

■

■ Discussion

■

Scalability of Our Method

■ Used data: artificial 1000 tasks

 Precedents: substituted for set of group number
and order in the group generated by normal
random number

 Robot availability: all available
 Task time: uniform random number from 0 to 10

■ Convergence condition: objective < 1 s

0

5

10

15

20

0 50 100C
o

m
p

u
ta

ti
o

n
 T

im
e

 [
m

in
.]

Resource Count

Less than

20 minutes

Resource count < 50 in large system (server, storage, ...) usually.
Our method can compute these assignments in practical time.

Future Work

■ Implementation of experts' knowledge into our balancing algorithm

■ Dual arm robots

■ Mixed line

Conclusions

I presented a new balancing method for robot contained line.

■ Main contribution for this research field: realization of idle time
collecting assignment for specified robot count.

■ Showed for our laptop assembly data set:

 An optimal assignment according to robot count
 Balancing performance compared with manual assignment:

• Reduction of 30 % robot time by collecting idle time into robots

• Reduction of 5 % cost of human resources by searching better
assignments in enormous combinations exhaustively

Acknowledgements
■ Satoshi Tomita, Fujitsu Limited, Japan:

providing us data of laptop assembly tasks

■ Yosuke Korotsune, Shimane Fujitsu Limited, Japan:
executing manual line balancing

■ Colleagues, Companies

■ This work was supported by the Grant-in-Aid of the New Energy and
Industrial Technology Development Organization (NEDO) of Japan.
(Project Code P15008)

Sachio Kobayashi Hiroki Kobayashi Junji Tomita

Collaborators

: Available

: Unavailable

■ For 7 humans:

 Top right:
2 robots

 Bottom left:
3 robots

 Bottom right:
4 robots

0

5

10

15

20

0 1 2 3 4 5

7 humans
8 humans
9 humans

O
b

je
c
ti
v
e

 [
s
]

(E
x
c
e

e
d

 T
im

e
)

Robot Count

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
] 66 s

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
]

68 s
P

ro
c
e

s
s
in

g
 T

im
e

 [
s
] 66 s

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
]

: Available

: Unavailable

■ For 8 humans:

 Top right:
2 robots

 Bottom left:
3 robots

 Bottom right:
4 robots

0

5

10

15

20

0 1 2 3 4 5

7 humans
8 humans
9 humans

O
b

je
c
ti
v
e

 [
s
]

(E
x
c
e

e
d

 T
im

e
)

Robot Count

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
]

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
] 64 s

: Available

: Unavailable

■ For 9 humans:

 Top right:
0 robot

 Bottom left:
1 robots

 Bottom right:
2 robots

0

5

10

15

20

0 1 2 3 4 5

7 humans
8 humans
9 humans

O
b

je
c
ti
v
e

 [
s
]

(E
x
c
e

e
d

 T
im

e
)

Robot Count

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
]

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
] 63 s

P
ro

c
e

s
s
in

g
 T

im
e

 [
s
]

Robot and Human Count

■ Cycle time: 60 s

Robot count 0 1 2

Human count 10 9 8

+1 robot

-1 human

+1 robots

-1 human

Resource Combinations Obtaining 0 Objective

0

5

10

15

20

0 1 2 3 4 5

7 humans

8 humans

9 humans

10 humans

O
b

je
c
ti
v
e

 [
s
]

(E
x
c
e

e
d

 T
im

e
)

Robot Count

Computational Time

0

5

10

15

20

0 1 2 3 4 5

7 humans
8 humans
9 humans

O
b

je
c
ti
v
e

 [
s
]

(E
x
c
e

e
d

 T
im

e
)

Robot Count~ 10 s

1 ~ 7 hour

Schematic Picture of Execution Time VS Objective

Manual assignment

Our method

O
b
je

c
ti
v
e

Execution Time

Saturating soon

Reducing gradually

0

5

10

15

20

7 8 9

0 robots

1 robots

2 robots

3 robots

O
b

je
c
ti
v
e

 [
s
]

(E
x
c
e

e
d

 T
im

e
)

Human Count

Scalability of Our Method

■

3
4

1 2

1

2

10

19

20

1 2 3 4 5 6 7 8 9 10

G
ro

u
p

 N
u

m
b

e
r

Order

Precedence Graph of Our Data

Data - Assemble of Laptop

Task ID Task time (Human) [s] Task time (Robot) [s] Precedents

1 1 1

2 1 6

3 2 2

4 3 3

5 5 6 3

6 1 3 3

7 3 6 6

8 3 6 6

9 4 6 6

10 3 5 9

11 5 6 6

12 7 6 11

13 5 5

14 3 6 5

15 2 6 12

16 1 1 14,15

17 2 4 16

18 1 1 17

19 3 6 18

20 1 1 19

21 3 15 20

22 1 1 21

23 3 6 3

24 1 5

25 4 6 24

26 4 6 25

27 4 6

28 1 2 26

29 3 6 28,27

30 2 5 29

31 2 6 3

32 3 6
22,13,

8,10,7

33 3 6

34 8 6 33

35 10 6 4

36 6 16 6

37 3 5 32

38 4 8 37

39 2 6 32

40 6 15 39

62 3 5 61

63 6 5 62,13

64 2 5 63

65 2 5 13,31

66 2 5 54

67 4 10 47

68 5 5

56,66,42,

38,36,59,

58,52,23,

64,67,65,

50,48

69 6 6

70 4 10 69

71 4 10 70

72 1 1 71

73 4 10 72

74 5 5 69

75 5 5

76 3 6 75

77 5 10 75

78 2 10 75

79 5 10 73,77,78

80 5 5

81 9 18 68

82 5 5 68

83 6 10 79

84 5 10 79

85 6 6 83,74,84

86 3 3 85

87 3 3 80,84,83

88 5 5 87

89 5 5 88

90 2 2 89

91 6 6 90

92 6 6 91

93 7 7 92

94 5 5 93

95 2 2

96 21 21
86,94,

95,76

97 6 10 96

98 3 3 97,68

99 4 6 95

100 6 12 95

101 7 20 68

102 4 4 98

103 6 6 46

104 6 6 98

105 8 8 98

106 4 4 104

107 10 10 106

108 4 4 107,68

109 7 7 108

110 3 3 102

111 6 6 102

112 12 12 109

113 4 10 35

114 5 10 113

115 5 5 114

116 3 15 68

117 5 5 68

118 4 4
103,82,81,

110,117,116

119 3 3 118

120 10 20 95

121 7 7
98,111,112,

115,101

122 2 2
121,119,

120,99,100

123 2 2

124 8 12 13

125 3 5 13

126 2 2 122

127 7 15 126

128 1 1 127

129 3 3 128

130 3 3 122

131 3 3 130

132 7 5 75

133 1 1
129,132,125,

131,124

134 1 1 133

135 1 1 134

41 5 10 39

42 1 6 40,41

43 7 6 34

44 3 6.4 43,32

45 2 2

46 4 4 45

47 4 5.7 30,46

48 4 6 46

49 5 15 47

50 4 5.9 49

51 5 6 43

52 5 5 51,44

53 4 6

54 2 5 13,53

55 4 3 32

56 1 6 54,55

57 5 4 13

58 2 8 57

59 4 8 32

60 2 5

61 2 6 60

	S33_02 - Ryo Murakami.pdf
	A New Line Balancing Method Considering Robot Count and Operational Costs in Electronics Assembly
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35

