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Abstract

In this study, the question was how to perform statistically reliable robust- ness tests for the non-contact drop-on-demand
printing of functional fluids, such as solder paste and conductive adhesives. The goal of this study was to develop a general
method for hypothesis testing when robustness tests are performed. The main problem was to determine ifthere was a statistical
difference between two means or proportions of jet printing devices. In this study, an examp le of jetting quality variation was
used when comparing two jet printing ejector types that differ slightly in design. We wanted to understand if the difference in
ejector design can impact jetting quality by performing robustness tests. and thus answer the question, "Can jetting differences
be seen between ejector design 1 and design 2"?
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Introduction

Surface mounting technology has come to dominate the production of commercial electronics over the last thirty years. The
connection of components to metallic pads using a metallic alloy delivered onto the printed circuit board (PCB) as a suspension
and a reflow step is the dominant methodology for electronics production. The demands on volume delivery and positioning
accuracy for solder paste deposits are increasing as the size and complexity of circuits continue to develop in the electronics
industry. Board designs that include advanced BGAs, CSPs with 0.4 mm and 0.3 mm pitch, as well as simpler 01005 and
008006 components, raise the bar for positioning demands and volume delivery and repeatability for solder paste deposits.
According to the 2016 iINEM I roadmap placement accuracy for these kinds of components will reach 6 sigma placement
accuracy in X and Y of 30 um by 2019[1]. This level of placement accuracy for components must be accompanied by a related
accuracy for the deposit of solder paste and related fluids in order to fulfill the related increasing demands on interconnect
reliability in increasingly demanding environments with respect to temperature extremes, mechanical stresses and/or
production limitations[2][3]. Among the alternatives for the deposition of solder paste and other fluids on a PCB is the
non-contact deposition technology jet printing, which offers advantages concerning precise volume repeatability, software
control and local volume control. In this study, the question was how to perform statistically reliable robustness tests for the
non-contact drop-on-demand printing of functional fluids, such as solder paste and conductive adhesives.

Jet printing

Jet printing comprises the non-contact deposition of a functional material through the transfer of momentum from a piston to
the material, in this case solder paste. Jet printing on the fly is the capability of jet printing material while in motion. To jet
solder paste reliably, the transfer of momentum must be made while minimizing the risks of deforming the metal alloy particles
to eliminate the coining effect, thus resulting in continuous jet printing over time. A possible method of transferring momentum
without contact is through very high accelerations. Coupling high accelerations with precise volumetric control enables the jet
printing of a wide range of depositsizes with a single hardware setup, see Figure 1.

Figure 1: A schematic of asolder paste jet with an auger that feeds solder paste to the jet printing chamber and a piston
that transfers momentum to the solder paste.
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By controlling the material fed into a jet printing chamber, a fixed volume is created that is the basis of the jet printing process.
The volume that has been transferred into the chamber is forced through the nozzle in a single shot by the volumetric
displacement provided by the piezo unit. The chamber is then refilled before the next ejection. Using this principle, a variable
volume of material depositions can be created without changing the frequency of the jet because the solder paste volume is
precisely controlled through the feed of material into the chamber [4].There are physical limitations of the mechanics which
define the functional range of this apparatus, but these are well defined and enable a wide range of outputs with asingle setup at
a constant speed ofup to 500 Hz.

Jet printing solder paste not only allows for single deposit variation of volume, but also enables multiple pass possibilities to
customize solder paste deposits. Customization can be done with respect to volume, paste height, shape, position and pad
coverage which can be seenin Figure 2.

Figure 2: Examples of the control of paste height (2.5 D printing), pad cowerage and wlume.

The accuracy and repeatability of deposits with respect to volume, diameter, and positioning is of primary importance for any
application of the technology. Therefore, an efficient and statistically sound evaluation of the reliability of jetting robustness is
necessary.

The goal of this study is to develop a general method for hypothesis testing when robustness tests are performed. The main
problem is to determine if there is a statistical difference between two means or proportions of jet printing devices. In this study,
an example of jetting quality variation is used when comparing two jet printing e jector types that differ slightly in design. We
would like to understand if the difference in ejector design can impact jetting quality by performing robustness tests. and thus
answer the question, "Can jetting differences be seen between ejector design 1 and design 2"?

Compute differences of means when performing hypothesis testing
When comparing different means of material quantities obtained fromthe measurement of material depositions, we can use the
relation
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Note that Equation 1 is used to work with continuous variables. It is assumed that each observation is independent and
identically distributed, and E(X;) = u and V(X;} = o~ = to. Note that &; represents the sample mean, and y; represents the
true population mean, if we were to jet an infinite number ofdeposits with different e jectors, which is obviously impossible. a7
is the true population variance, which is also unobservable in this case, and »; is the number of observations (deposits) in each
test. Since the number of observations is large, the population variance can be approximated with the sample variance, s=. The
transformation in Equation 1gives a t-value, which can be used to evaluate if we reject our hypothesis or not. In most of the
experiments, we will initially formu late that the difference between the two population means is zero, i.e. the means are equal.

Equation 1 can be understood intuitively as a sequence of random variables that converge into a standard normal distribution
with mean 0 and variance 1. The null hypothesis is formulated as: There is no difference between the means. The alternative
hypothesis is often formulated as: There is a difference between the means. A large difference between the observed means,
when subtracting the difference between the means under the null hypothesis (which we assume to be zero in most cases),
divided by the square root of their samp le variances implies that there is a high probability of a difference between the means.
Therefore, the null hypothesis is rejected if ¢-values are obtained that are either too large or too small. The t-values are
selected based on the significance level @, the probability of rejecting the null hypothesis given that it is true, which is
commonly referred to as critical values. Two very common significance levels are 3% and 1%, and their corresponding
critical #-values are 1.96 and 2.326, respectively, if a two-sided alternative hypothesis is formulated and has more than 1000



observations. Note that the null hypothesis is rejected if |tsns] = terit. The t-values are used because the population variance
7* is estimated with the observed sample variance s*.

Hypothesis testing

Testing our hypothesis
We now would like to develop a general method for testing if there is a statistical difference between the means of two sets of
measurements in the a test of process robustness. A formal approach is

1. Null Hypothesis:H;: There is no difference between the jetting quality variation of ejector design 1 and ejector design

2.
Alternative hypothesis:H,: There is a significance difference.

Test statistic: Equation 1 is used as our test statistic, but replace the population variance =, with the sample variance
S:.

4. Rejectionregion: Reject Hy if |T| = Ty, where Ty,- is acritical value, based on the chosen significance level. T
is the statistic which is obtained by using Equation 1.

Problems with our hypothesistests

A problemthat arises when using the hypothesis tests for continuous variables is if the mean of a quantity varies for iterations of
identical jetting jobs, i.e. there is a significant difference between means for different jobs, although no change has been
implemented in the test. In the tests described below, a generic ball grid array (BGA) board pattern is used that includes 96
individual 360 pad 0.4 mm pitch BGAs. The BGA pattern used on the test board is shown in Figure 3. The pattern was jetted on
photo paper placed on a blank FR4 carrier measuring 210 by 297 mm. Diameter (area) measurements were made using a
standard camera system in the jetting device, while volume measurements were made using a commercial optical solder paste
measurement device. Goal diameters for the BGA deposits ranged between 210 and 270 gm.
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Figure 3: Generic 360 pad BGA pattern used in the jetting job.

All controllable variables have been held fixed between the tests, except the variable of interest. The reason for a significant
difference in means between different jobs is unknown, but a probable explanation is that there may be many other variables
that effect the resulting deposition, which the experimenter can not control. Ideally, we would like to have the deposits as
homogeneous as possible, that is, observations should have the same characteristics throughout the jetting series, when the
same ejector is used in the jetting job, i.e. deposits are produced with the same goal depositsize. Instead, something interesting
is observed. There is no visual drift by looking at the plots, but the #-values are significant when comparing different jobs from
the same ejector. The sign of the t-values appear to be random, or there is at least no observable trend when visualizing the
t-values. Figures 4 and 5 illustrates this behaviourin the jetting process, based on the BGA observations. Figures 4and 5 shows
all observations inthe BGA job for the diameter and volume, respectively.
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Figure 4: Pairwise t-tests of BGA jobs where we tested Hy: There is no significant difference between the different
jobs versus Hy: There is asignificant difference between the mean diameters of different jobs. A 5% significance leel
isused in the tests.
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Figure 5: Pairwise t-tests of BGA jobs with the same ejector where Hj was tested. Hy: There isno significant
difference between the different jobs versus Hy: There isasignificant difference between the mean wolumes of
different jobs. A 5% significance lewel is used in the tests.

When comparing different deposit sizes, it is of interest to determine if there is a significant difference between the means for
each of our deposit sizes. We would also like to know the relationship of the difference in means, i.e. if one ejector design

generates larger or smaller values compared to a second ejector design.

Another problemthat arises in our hypothesis tests is that outliers may affect the mean, i.e. observations that are distant from
otherobservations. In general, one should be carefulto remove outliers if the cause ofthe outliers is unknown. Since we assume
that the jetting process within a job is a stochastic process, with mean around the true mean and constant variance, one could in
consultation with the experimenter remove outliers if we know that the outliers are randomoccurrences, equally likely to occur
in each of the tests. In Figure 4and 5, it can be seen that some observations are distant fromthe the rest ofthe observations in the

BGA job.
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Figure 6: Plot of the a) diameter and b) wlume for two identical BGA jobs

This relation can be used to develop a formal method to determine if there is a significant difference between means in a
robustness test.

Formal method for testing

We now wish to develop a method for hypothesis testing to determine if the means of a robustness test differ significantly.
Since it is assumed that the jetting process is a stochastic process, we want to minimize the risk of rejecting the null hypothesis
due torandomness in data, as well as other confounding variables that may affect the result.

We are interested in investigating if there is a significant difference between means in a robustness test for each deposit
diameter. In this case, we want to compare if the diameters and volumes for deposits with goal diameters of 210um, 225um,
240um, 230pm and 270um differ between the two ejector designs.

The method defined in Section 3 may be used again to perform our hypothesis tests between the ejector designs when
comparing deposit sizes. In order to avoid randomness in the data, a restriction is added to the test. In order to minimize the risk
ofhaving randomness in ourdata affecting the #-values, we would like thatall the #-values must be significant forthe different
depositsizes, as well as having the same sign for the #-values.

Figure 7 shows that all the means for the second test are higher than those for the first test. When performing t-tests for the
different ejector designs, we find that all means for each deposit size comparison differ significantly from each other.

It is also important that the order of jetting does not affect the outcome. Therefore, the same experiment is repeated using
anotherejector. In the new experiment, the order of the experiments is switched, i.e. reverse the shooting order for each test.
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Figure 7: Plot of the wolume means for the different ejector designs, when comparing the pairwise deposit sizes.
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Figure 8: Pairwise t-values for the mean wlumes. It is found that the null hypothesis can be rejected, i.e. reject that
there is no difference between the means at 1% significance. This is because the magnitude of all the t-values are larger
than our critical value, and all the t-values hawe the same sign.

Hypothesis testing with the p-value approach

In order to compare if there is a significant difference between missing volumes, i.e. deposits that are smaller than a certain
threshold, the Central Limit Theorem (CLT) can not be used since the probability of missing is very low (close to zero). There
is also a much easier way to performhypothesis tests when we work with sums of binary variables. Note that a missing volume

is a Bernoulli trial, with probability of success (missing) being close to zero. The probability of success for a Bernoulli variable
is

PX =x)=p*(1 —p)** forx € {01} )

The sum of the Bernoulli trials follow a Binomial distribution with parameters =.p, and the sum of the number of missing
volumes ¥ = IX; is distributed as

P¥=y)= (;1) pPl-p)"7% y=0LZ...n ©)

The expected value ofthis distribution is np and variance np{1 — p). Notethat » = Zx;/n,i.e. asimple average of the binary
outcomes.

The p —value approach involves determining the probability of obtaining a more extreme statistic, given that the null
hypothesis is true. If one has data from previous tests of the missing volumes given a certain solder paste, then the probability of
missing can be estimated with the obtained statistic fromthe previous tests. Otherwise, one can assume that the null hypothesis
in this case is the missing estimate obtained in the first test. Here, we could say that we assume that the estimate obtained from
the first test is the true parameter value. We compare the probability of obtaining our second estimate, given that the first
estimate is true, by calculating the probability of observing a more extreme statistic in the direction of the alternative

hypothesis. If the p —value is small (less than &), it is unlikely that the tests have the same parameter values, and the null
hypothesis is rejected.

Let us first understand that Binomial distribution can be used to compare missing volumes. Recall from Equation 2 that a
randomdepositis a Bernoulliexperiment with two outcomes, success orfailure (success can also be something bad, in this case
missing). In order to understand the concept of the Bernoulli variables, let us consider the example of acoin. The probability of

heads is 0.3, and tails is 0.3, since it is equally likely for each outcome. If we use the Bernoulli formula and are interested in
the probability of success, we get



PX=1)=0.51-05"! =05
The probability of no success (tails) is
P(X =0)=0.5%1-05*" =05

If n independent Bernoulli trials are performed, the sum of the number of successes turns out to follow the Binomial
distribution. If the coin is flipped n = 3 times, the probability of ¥ = I.X; for thedifferent outcomes are now

P(¥ =0)=(1-0.5)® =0.5°
P(¥=1)=05-(1-05°+{(1-05)-05-(1 —05) +(1-0572-05=3-05-(1-05)>=3.0.5°
P(¥=2)=05+(1-05+05-(1-0.5)-05+ (1—-0.5)-0.5> = 3.0.5°
P(Y = 3) = 0.5%.
Using the Binomial theorem, the reader can verify thatthe formula

n!

m—y1ly!

P¥Y=y)= (;1) pYl—p)y7 = pr(L—p)"Y

gives the same result. Another way of thinking on the sumof the number of successes is to consider it as the joint probability by
multiplying the Bernoulli trials together

[T, p*i(l —p)' =% =p™i(l — p)" =% = p¥(1 — p)" .

Since the Bernoulli trials are independent, the trials may be multiplied in order to get the joint probability distribution, but the
n
binomial coefficient, (j) must also be added in orderto calculate the joint probability of the number of successes, and not only

a specific order of the outcome. Recall the example of flipping the coin n = 3 times, where not only the outcome must be
considered, but also the number of ways that a specific outcome can occur.

Begin by considering the examp le of calculating the p-value, where we assume that we have performed a robustness test. In the
first parameter settings, 300,000 deposits were jetted, and the number of missing volumes were Ix; =y = 10. After
implementing a change in the ejector, another series of 300,000 deposits were jetted with 8 missing. It is assumed that the
estimate obtained in the first series is the true parameter value. Hence, #, = 10300000 and E[¥] = 300000 - 5 = 10. We
would now like to calculate the probability that
¥ —10| = 18— 10| = 2 given that ¥~Bin(n. §,).
We can calculate this event by
P¥=10-2U¥=10+2)
=P¥F=8U¥=12)
=PRY=8)+FP(Y =12}

=1-P(8B =V =12},

Using a computer, the p —value is in this case 0.6360, rounded to four digits. From Figure 9, it is observed that approximate ly

63% ofthe observations are outside the interval 8 = ¥ == 12, and hence, we can not make any conclusions about the sample
since the P —value is above our significance level & (0.05 or 0.01).
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Figure 9: Simulation of the Binomial distribution with parameters N = 300000, p = 10/300000.

How many observations do we need?

In the field of statistics, one would like to have as many observations as possible in order to draw conclusions about the data. In
statistics, as well as many other fields of science, one can never say that "we know that something is true™ or "accept the
alternative hypothesis™. Theories may only be falsified by rejecting the null hypothesis, but conclusions can not be reached
about the alternative hypothesis.

One rule of thumb when using the central limit theorem

F-p F
—=— N,

is to have at least 30-50 observations. The uncertainty decreases when the sample size is increased. We seek to obtain as much
information as possible at minimum cost. This is commonly referred to as experimental design. Let us now develop a common
method for selection of sample sizes in our experiments. Let us go back to the question, How many measurements should be
included in the sample?. The experimenter can indicate the desired accuracy by specifying a bound on the error of estimation.
Suppose that the desired deviation fromthe true mean is L7, with probability 95%. Recall that the critical #-valuewas 1.96 = 2.
Since approximately 95% of the sample means will lie within 2z of u in repeated sampling, we have

Let us approximate the minimum sample size given a certain accuracy. The mean of the diameter in previous tests for 210 gm
is 180 um, and mean for the volume for the same deposit-size is 1.2 nl. The sample variances obtained in a previous test for the
diameter and volume is 45.45 um and 0.0162 nl, respectively. Tables 1 and 2 show how the sample size changes as the desired
precision in our estimates is increased.

Table 1:Selection of sample size based on diameter data (210 gm)
I/ (deviation from the true mean) [um] 5 2.5 1 0.5 0.025
Sample size [1] 7 28 175 699 279 362

Table 2: Selection of sample size based on wlume data (210 gm)

U (deviation from the true mean) [ni] 0.3 0.2 0.1 0.05 0.01
Samplesize [1] 1 2 7 25 623




Summary

It is necessary to be careful when calculating the minimum number of observations required given a certain accuracy. As
mentioned earlier, the central limit theorem deals with independent and identically distributed random variables, although the
latter condition can sometimes be relaxed. One problem that arises throughout the statistical tests is that there are many
variables that the experimenter can not control, such as the state of the system, i.e. if the system is unstable during a certain
period of jetting, and stable during another period of jetting. Different states of jetting could be modelled and included in a
subsequent effort. In previous tests, where jet printing has been tested, 300 000 deposits have been enough to reject the null
hypothesis. Although the number of observations could easily be reduced from a theoretical perspective as illustrated in the
tables, one has to take these other factors, such as uncontrollable variab les, dependence of observations etc., into account when
designing the experiment and choosing the sample size.

Anotherimportant subject when designing an experiment, although it might seem obvious to many, is to hold as many variables
fixed between the experiments in order to avoid confounding variables to affect the outcome of the experiment. For instance,
when testing jet printing with ejectors with specific design differences, one would like to have a majority of test factors constant
for both designs, for example solder paste, actuation profile et cetera. Holding all controllable variables fixed except the
variables of interest between tests may increase the internal valid ity of the experiment. Also, since the uncontrollable variables
in the jetting process are assumed to be random, we assume that our result will converge to some value as the number of
observations is increased, while using different ejectors.
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Statistics
Hypothesis testing

1. Null Hypothesis: H; : There is no difference between the jetting quality variation of ejector
design 1 and ejector design 2.

2. Alternative hypothesis: H, : There is a significance difference.

3. Test statistic: Equation 1 is used as our test statistic, but replace the population variance

o2, with the sample variance s?.

4. Rejection region: Reject Hq if |1'| > 17, /2. where T}, /5 is a critical value, based on the cho-
sen significance level. 7' is the statistic which is obtained by using Equation 1.
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HO: There is no significant difference between the different jobs versus HA: There HO: There is no significant difference between the different jobs versus HA: There is

is a significant difference between the mean diameters of different jobs. a significant difference between the mean volumes of different jobs.
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Statistics

Bernoulli test

P(X=x2)=p"(1—-p)' " foraxec{0,1}.

P(Y =y) = Z pY(1—p)" Y y=0,1,2,..n.



TECHNOLOGY'S MEETINGS AND COURSES: JANUARY 26-31, 2019

e 2019 FUTURE COMES CONFERENCE AND EXHIBITION: JANUARY 29-31, 2019
HPCAPEXEXPO TOGETHER

Statistics

Central Limit Theorem

(71 —@2) — (1 — p2) F
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Statistics

Pairwise t-values for the mean volumes

Volume [jem]

210 220 230 240 250 260 27 210 220 230 240 250 260 270
Dot size [um] Dot size [um]
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Statistics
Simulation of Binomial distribution
0.12 -
0.10 -
n
2 0.08 1
.g 0.06 -
S
0.04 4
0,02
0.00 - '

0 5 10 15 20 25
Number of events [1]
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Sample size
U (deviation from the true mean) [nl] | 0.3 | 0.2 | 0.1 | 0.05 | 0.01
Sample size 1] 1 2 7 |25 623
U (deviation from the true mean) [pm] 2.5 |1 0.5 | 0.025
Sample size [1] 28 | 175 | 699 | 279 362
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Summary
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- Central limit theorem Is used to estimate necessary sample size

for non-contact deposition

U (deviation from the true mean) [nl] | 0.3 | 0.2 | 0.1 | 0.05 | 0.01
Sample size 1] 1 2 7 |25 623
U (deviation from the true mean) [pm] 2.5 |1 0.5 | 0.025

Sample size [1] 28 | 175 | 699 | 279 362
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THANK YOU!! 1
Any Questions?





