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Abstract 

Today, the metal core printed circuit board (MCPCB) business is booming thanks to the rising popularity of LED TV. The 

majority of MCPCB is single sided. However, the demand for multi-layer board is increasing since the interconnection 

density becomes higher. There are several approaches for this problem. One of them is to press resin coated foil (RCF) on 

the single side MCPCB. And even though there are many RCF products, RCF with high heat dissipation is rarely 

available. Therefore, the industry is looking for new thermal RCF material for multilayer MCPCB.  

To meet this demand, a novel RCF material with high heat dissipation has been developed. Alumina fillers have been 

carefully selected, surface treated and highly loaded to the modified epoxy resin system. Only good dispersion with high 

power mixing can secure the material which has more than six times the thermal conductivity, 1.5W/mK, than that of 

conventional RCF. It also shows a good thermal stability, withstanding longer than 10min at 288C, which makes it 

suitable for lead-free process. The other properties of this material, such as copper adhesion, dielectric properties and 

laser via whole processibility will be presented.  

 

Introduction 

Electronic devices are becoming smaller, lighter and multifunctional, which increases power density. In order to cope 

with this trend, thermal conducting materials need to be improved [1]. At the same time, the advancement in head light of 

automobile, street lamps, and light emitting diode (LED) lighting modules, etc, drives the use of thermal management 

system. Especially, high power LED becomes popular due to its high brightness. However, the thermal problem 

associated with LEDs becomes a big challenge as the power of LEDs continuously increased. Therefore, the thermal 

management is growing more important. MCPCB has been widely adapted for these applications because of higher heat 

dissipation compared with that of conventional FR-4 based PCB. Even though the majority of MCPCB is single sided, 

the demand for multi layer board is increasing. The major approach is to use thermal prepreg between double sided PCB 

and MCPCB as a dielectric adhesive. It is easy to adapt since the materials are readily available and economical. 

Unfortunately, the board tends to be thick and heavy, which makes it unfavorable for consumer electronic applications. 

New approach to address this problem is to adapt thin build-up materials like RCF. There is a major technical challenge, 

which is to develop the thermal RCF with improved thermal conductivity without compromising on other key properties 

like thermal reliability, PCB processibility and lead-free process compatibility. Since RCF is composed of dielectric and 

copper, our study focuses on proper resin system and ceramic fillers. The effect of resin and filler at various conditions 

on the thermal conductivity and other properties are discussed in this paper in addition to some reliability tests that were 

carried out.  

 

 

 

 



Table1. Thermal properties and density of various materials [2] 

Material 
Thermal conductivity 

(W/mK) 

CTE 

(10-6/℃) 

Density 

(g/cm3) 

Aluminum 247 23 2.7 

Gold 315 14 19.32 

Copper 398 17 8.9 

Lead 30 39 11 

Molybdenum 142 4.9 10.22 

Tungsten 155 4.5 19.3 

Invar 10 1.6 8.05 

Kovar 17 5.1 8.36 

Diamond 2000 ~ 3000 0.9 3.51 

Beryllium oxide 260 6 3 

Aluminum oxide 18 8.1 3.69 

Aluminum nitride 320 4.5 3.3 

Silicon carbide 270 3.7 3.3 

Silicon nitride 30 3.3 3.3 

Boron nitride (XP) 71 0.6 1.9 

CNT(single wall) ~ 6000 ~ 10-7 1.33 ~ 1.40 

CNT(multi wall) ~ 3000 ~ 10-7 1.40 ~ 1.60 

Graphite 25 ~ 470 1.2 ~ 8.2 1.3 ~ 1.95 

 

Strategy of New materials 

A high filler loading is necessary in order to increase thermal conductivity of dielectric layer. In addition, dielectric layer 

should have good thermal stability to be a part of PCB. One of the most widely used approaches to improve thermal 

performance of a dielectric is to increase cross-linking density with multifunctional resins. The other is to increase 

packing density by adding fillers. Among the factors that may influence the thermal conductivity of a dielectric, the type 

and the portion of fillers are of paramount importance. Other factors such as the filler shape and the surface treatment 

with coupling agent were also studied. However, increasing packing density with filler has adverse effects on peel 

strength, thermal resistance and PCB processibility. Instead of increasing packing density of a dielectric with 

multifunctional resin, modified epoxy with polyester such as liquid crystalline polymer has been adapted to compensate 

for decreased properties. It was possible to decrease filler portion yet to improve thermal conductivity. In addition, the 

new coupling agent which has two different reactive groups[3] was adopted. Two chemical groups, hydrolysable and 

organo-functional groups, enable the coupling agent to be a bridge between organic and inorganic materials. This 

improved bonding leads to the increased thermal conductivity by minimizing the heat scattering at the interface.  

In addition, the adoption of hardener with high mole volume and low functional group content boosted the thermal 

stability. The resin system fulfills three requirements of thermal PCB material, which are high thermal conductivity, good 

thermal performance and excellent PCB processibility. It also has proper operation window in coating and pressing 

processes due to the slow curing in contrast to fast reaction of traditional multifunctional system. 

 



Properties of New materials 

a. Heat dissipation properties 

We present a study of a new resin system loaded with alumina particles. The thermal conductivity was studied as a 

function of the loading ratio compare with conventional resin system (Epoxy). Characteristic properties of input materials 

are shown in Table 2. Average diameter of filler particles is listed in table 2 ; their SEM micrographs are shown in Fig. 1. 

The thermal conductivity of conventional resin (epoxy system) is typically 0.23W/mK.[4-6]. On the other hand, new 

resin has a thermal conductivity of 0.42 W/mK. Four different samples labeled 1 to 4 were evaluated for this study. Each 

sample was prepared by gradually adding the appropriate amount of alumina to resin/hardener mixture, stirring with a 

high shear device, degassing the mixture and pressing it at 180℃ for 2hours. Fig 2 shows the thermal conductivity of the 

dielectric layer with varying shapes and portions of alumina. It is clear that the thermal conductivity is higher with a 

round alumina and a new resin system. New resin system supports to shorten the thermal conductive path and to establish 

high thermal conductive network for heat conduction. 

 

Table 2.Material properties of resin systems 
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Fig. 1. SEM images of Al2O3 

 



 

Fig. 2. Thermal conductivity as a function of filler loading 

 

b. Thermal resistance for Lead-free Requirements 

 There are numerous work groups and industry organizations involved in a “lead-free solder initiative”, including IPC, 

NEMI, and HPD. Thermally stable materials that can tolerate high temperature (260℃) during the IR flow process have 

become necessary. In order to measure thermal stability, time to delaminate at high temperature such as 260℃ (T-260) or 

288℃ (T-288) is widely used together with Td due to the limitation of Td as a indicator of thermal stability. Td and T-260 

data of conventional RCF material and new materials are shown on Fig. 3. T-260 of new material is longer than 2 hours, 

which is 8 times longer than that of conventional RCF materials. In fact it can withstand almost 3mins at 300C while 

conventional RCF material delaminates immediately upon heating.  

 

Fig. 3. T-260 data of new material 

 



Decomposition temperature (Td) by thermal gravimetric analysis (TGA) is one of the most important properties for lead-

free process. The mass change of the sample is measured as temperature rises. At the beginning of heating, the water and 

the non-volatile ingredients evaporate (within 5%) and the gas is released as the high temperature breaks the chemical 

bonds of resin. The temperature where the mass of sample is reduced by 5% is called the decomposition temperature. The 

importance of Td was recently recognized because the PCB process will be greatly influenced by emitted gas at high 

temperature as the lead free solder is processed at higher temperature. The TGA results of new material and conventional 

RCF material are shown in Fig.4. It shows that new material is more than suitable for lead-free process because its Td is 

more than 40 degrees higher than that of the conventional. 

 

Fig. 4. TGA data of new material 

 

c. General properties of new material 

New materials have been developed for improving thermal performance. Their properties are better than those of 

conventional RCF material as listed in below in Table 3. In addition, they are compatible with lead free process, which 

require high thermal stability.  



 

 

Table 3. General Properties of new material 

Properties Condition / Method Unit Value 

Mechanical    

Peel Strength (1oz Cu) IPC-TM-650.2.4.8 kgf/cm 1.4 

z-CTE (before Tg / after Tg) IPC-TM-650.2.4.41 ppm/℃ 30/ 99 

z-axis Expansion 50℃-260℃ % 1.5 

Electrical    

Dk @1GHz  IPC-TM-650.2.5.5.1  5.7 

Df @1GHz IPC-TM-650.2.5.5.1  0.014 

Volume Resistivity IPC-TM-650.2.5.17.1 ohm-cm 5.0E+13~5.0E+14 

Surface Resistivity IPC-TM-650.2.5.17.1 ohm 1.0E+13~1.0E+14 

Thermal    

Thermal conductivity ASTM E1461 W/mK 1.5 

Tg (DMA) IPC-TM-650.2.4.25c ℃ 120 

Pressure Cooker IPC-TM-650.2.6.16  Pass 

Chemical / Physical    

Water Absorption E-24/50 + D-24/23 % 0.5 

Flammability UL94  V-0 

 

Reliability of new material 

a. Anti-migration property 

The movement of metallic ion from anode to cathode under fixed voltage at high humidity is called electrochemical 

migration and the most typical migration is called the conductive anodic filament (CAF). CAF is a significant and 

potentially dangerous source of electrical failure in the PWB and, thus, the overall system of which it is a part. Especially, 

as PWB’s circuit density gets higher and line space between patterns become narrower, the CAF resistance becomes 

much more important among the reliability properties. The 2 layer test coupon (LED bar of 2 layer structure, 6 channels) 

was prepared and preconditioned by similar treatment as the actual PCB process through reflow. As shown in figure 5, 

the CAF didn’t occur even after 500 hours.  
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Fig. 5. CAF test data of new material 

 

b. Thermal stress test 

The PCB reliability test was performed at same temperature (255℃~265℃) as the actual lead-free process after preparing 

2 layer test coupon (Laser via hole in PCB coupon) and preconditioning them at fixed temperature and humidity. The 

coupons were micro-sectioned and checked the resistance change (ohm) if there was any defect in LVH part. There were 

no abnormal point and cracks/delaminations in the board under microscope regardless of the degree of conditioning as 

shown in Fig.6-7.  

 

Fig. 6. Micro section after mild conditioning and following reflow 

 



 

Fig. 7. Change ratio of electric resistance after Thermal Cycling Test 

 

Conclusion 

New material for thermal management system has been developed. The high thermal conductivity of the dielectrics 

fabricated in this project was accomplished by maximizing the formation of conductive paths and minimizing the thermal 

barrier. In order to develop such material, the modified epoxy with polyester was selected. This new resin system can be 

decreased the loading percent of filler as well as to improve thermal conductivity. The materials obtained demonstrated 

lead free process compatibility as well as good reliability.   
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�Sample construction

- 2 Layer : H oz & 100 um dielectric layer

- Base : 1oz & 95 um dielectric layer & 1.5T Al

- 0.2Φ

�Pre-conditioning

- E-4/145 + C-96/30/70 + Reflow (peak 250℃)

�TCT conditioning

- -25℃/9min ↔ 125℃/9min, 1000 cycle

- Change ratio of electric resistance below 0%

Thermal Cycling Test
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Conclusion

• Novel materials of high Thermal conductivity have been developed using 

epoxy resin with crystalline backbone.

• New resin system composed of base resin with crystalline have low loading 

alumina comparing with the conventional resin system.

• New materials demonstrated excellent heat resistance and reliability,

which make them compatible with lead-free solder process.
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