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Abstract
As the frontiers of feature size and interspace between devices become ever challenging, we as an industry have to start
revaluating the performance of the toolsets that are used in the SMT arena. The days have gone where a tolerance of tens of
microns was acceptable; this has now moved into the sub 10-micron domain. This issue is none more critical than within the
print process, it is this pre placement tool-set that is most sensitive to the miniaturisation program running through the
industry.

When we take a step back and reflect on what is required from a printing process at this new level of miniaturisation, we can
quickly understand that the solder paste volumes required are crossing into semicon territory. Indeed it is clearly possible to
count the solder particles that makes up a 0.3mm C.S.P deposit, the scale is so small. It is therefore paramount the
composition of this pre placement tool-set is fully realised.

It is the intention of this paper to break down the elements of a print platform into its major mechanical and process
subsections. Within the mechanical section, the elements investigated will be co planarity of rail systems and tooling nest;
whereas with the process section the elements investigated will be the composition of the squeegee assembly. Each element
will be fully explored using analytical methods to comprehend the cause and effects. The separate modules will then be
combined to enable an aggregate picture of the process and thus allow a conclusion of which component parts are the most
critical and to what level of accuracy is required for the SMT challenges ahead.

Experimental process

For each experiment the following set-up was conducted; the solder paste used was a type 4 Pb free commercially available
material, the solder paste was refrigerated between each run and allowed to stabilise to room temperature before use, the
material was replaced after 5 refrigeration cycles.

The stencil used throughout the investigation was a 100-micron stainless steel laser cut mesh mounted foil, the aperture
dimensions and metal thickness were measured and it was these values that have been used to calculate the process
capability.

The 10 substrates used were pre-numbered and run in order; the board design followed the Dek08 pattern and was fabricated
from 1mm FR4. The components to be focused upon during this investigation will be the 0.4mm QFP’s and CSP, as can be
seen from Figure 1, the 0.4Amm QFP appears in opposite corners of the substrate, this feature will be used to understand if the
deposition process is symmetrical. The 0.4mm CSP represents the smallest and therefore most challenging device; this will
be used to understand the deposition capability.

The solder paste was measured using a Cyber Optics SE300 inspection machine; the machine was calibrated before the
investigation and was subject to a satisfactory gage R&R.

The process set-up was reset to the same level before each experiment, the stencil was cleaned using an automatic ultrasonic
Sabermax stencil cleaner, the solder paste was loaded on the front of the image and the squeegee pressure mechanism was
calibrated.

This investigation was split into two areas of research, transformed process elements and simulated interspace of the print
process.

The print platform was checked against the manufactures calibration and build specification after each experiment thus only
the forced change was affecting the response.
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Figure 1: Image of test substrate

Transformed process elements module

The process elements that were adjusted for this investigation were squeegee angle and blade material. The motive for
exploring the angle was attributable to the fact that the manufactured attack angle is instantaneity changed with the inclusion
of pressure; this phenomenon is illustrated in Figure2

60 deg squeegee l
60 deg squeegee assembly with pressure
assembly with no applied resulting in an
pressure applied. \ attack angle change. \

Figure2: lllustration of the effect of attack angle with respect to pressure.

Since the attack angle is a well documented variable within the print process, the approach of this investigation was to
fabricate a variable angle squeegee assembly; such that the attack angle could be independently set, Figure 3 shows an
illustration of this assembly. The outcome of this work was to understand if a specific angle gave an increase in deposition
capability.

Figure3: Drawing of the adjustable squeegee assembly

Under the following conditions; 200-micron thick stainless steel squeegee blade, 15mm overhang, length of 200 mm and 5
Kg of pressure, the average deflection of the squeegee blade was measured to be 8 degs. It was therefore decided that a range
between 35 and 60 deg would give ample resolution for this investigation.



The finish of the squeegee blade was also investigated and it was felt that the interface between the solder paste and the metal
face of the blade would contribute to the print process. It was decided that the finishes that would be investigated would
include the standard stainless steel blade, a stainless steel tetra carbon coated blade and a chromium-coated blade. The
purpose of the coating was to introduce a reduction of surface tension and therefore reduce the, “stick-scion” between solder
paste and squeegee blade.

Simulated interspace module

The simulated interspace elements that were adjusted within this investigation covered the co planarity of the following
interfaces; stencil, substrate and tooling.

The motive for including these elements into this investigation were attributed to the fact that within a print process three
individual components are interfaced during the print stroke, these been the tooling, board and stencil, if a process is set-up
incorrectly it is possible to create interspaces at these interfaces, Figure 4 illustrates this principle.
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Figure 4: Diagram showing the possible interspace conditions within a print process. a) correct set-up, b) interspace
created between substrate and stencil c) interspace between tooling and substrate

To fully understand the importance of these individual elements and their impact on the print process a set of experiments
were set-up to identify the impact.

The first experiment conducted isolated the impact that the co planarity of the substrate to stencil had on the print process. To
achieve this objective the following techniques were used; the rail system was systematically deformed using a shimming
material, this gave the ability to “dial in” a predetermined amount of deformation and therefore adjust the substrate to stencil
co planarity, the overall effect of this would be to produce a varying amount of interspace between the top of the substrate
and bottom of the stencil.

The second experiment within this interspace module was to investigate the effect of creating an interspace between the
tooling and substrate; figure 5 outlines the test strategy.
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The method of contrasting and comparing the results from the separate experiments was carried out by statistical analysis
(Minitab) and surface profiles of individual solder paste deposits. This approach allows for both quantitative and qualitative
to be used in the analysis, this was felt important as the market both demands a perfect looking print (sharp definition, flat top
etc..) and the statistics to prove that the process is also stable and capable.
The limit sets used to calculate the Cp and Cpk values are shown in Tablel, the stencil measurements were used to calculate
the theoretical volume; the transfer efficiency and tolerance were derived from previous assembly investigations.

Tablel: Limit sets

Theoretical Transfer MNormalised
Device  [Width/diameter |Length  |Thickness |Nominal Efficiency Tolerance % |Mominal UsL LSL
0.4 QFP 230 1524 100 35052000 75% 40 26289000 [36604600 15773400
0.4 C5P |230 100 4154756 70% 40 2908329407 1661 1744998

The results of this investigation are shown below; each experiment has the statistics and associated charts followed by the
surface profiles of the solder paste deposits (for reporting purposes board 5 is only shown)

Transformed process elements module



Experiment 1

Table 2: Statistics data from experiment 1

Experiment 0.4mm QFF 1 0.4mm QFF 1 04mm QFP 2 |0.4mm QFF 2
Mame 0.4mm CSF Cp |0.4mm CSP Cpk [Cp Cpk Cp Cpk
35- 40 deg s9a 0E15 0.499 1103 0.827 1.262 0682
45- 50 deq sga 1.393 1.133 1.03 .555 1.033 0.98
55 -60 deg sga 1.45 1.052 1.056 0.956 1122 1.07
Table 3: Process capability charts from experiment 1
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Table 4: Surface profiles from experiment 1

35-40Deg

(Board 3)

0.4mm CSP

45 -50Deg

(Board 3)

55 -60Deg

(Board 3)
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Table 5: Statistics data from experiment 2

0.4mm QFP

Experiment 0.4mm QFF 1 0. 4mm QFF 1 04mm QFF 2 |0.4mm QFP 2
MName 0.4rmm CSP Cp  [0.4mm CSP Cpk [Cp Cpk Cp Cpk
55-TC 0.894 0.889 0.98 0.848 1.105 0.933
Chraome 1.352 1.285 1.076 0.995 1.114 1.0587
Table 6: Process capability charts from experiment 2
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Table 7: Surface profiles from experiment 2
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Tetra Carbon
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Chart showing the process capability - Transformed process elements module
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Figure 6: Chart showing transformed process elements (experiments 1&2)

Simulated Interspace Module

Experiment 3



Table 8: Statistics data from experiment 3

Kpenment Amm AmMim Amm AmMim
Experi 0.4 CFP 1 0.4 CFF 1 0.4 QFP2 (0.4 CFP 2
Marme 0.4mm CEF Cp [0.4mm CEP Cpk |Cp Cpk Cp Cpk
Substrate to
stencil
interspace 300
MICHNS 0.73 0.054 1.319 1.019 1.165 0.895
Substrate to
stencil
interspace 200
MICHnS 0.65 0.33 2627 1.356 1.219 0.946
Substrate to
stencil
interspace <100
microns 1625 1.506 1.318 1.311 1.304 1.296
Table 9: Process capability charts from experiment 3
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Table 10: Surface profile from experiment 3
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Experiment 4

Table 11: Statistics data from experiment 4

Experiment 0.4mm QFF 1 [0 4mm QFFP 1 (0.4mm QFP 2 [0.4mm QFP 2
Marne 0.4mm CSP Cp |0.4mm CSP Cpk [Cp Cpk Cp Cpk
Megative tooling
gap 0.781 0.163 1.443 0.813 1.145 0.765
Table 12: Process capability charts from experiment 4
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Table 13: Surface profile from experiment 4
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Chart showing the process capability - Simulated Interspace Module
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Figure 7: Chart showing simulated interspace (experiments 3&4)

Conclusion
Before comparing and contrasting these results it is worth reflecting on these two general observations: -

e For most process engineers, the print process is the first process to be set-up and the last process to be questioned
when thing go wrong.
e Within this industry it is a well-known fact that over 60% of all defects are attributed to the print process.

So why do engineers tend to over look the print process? And why does the print process provide the majority of defects?
This paper has been conducted to answer these questions.

The first module focused upon the transformed process elements; within this section the squeegee attack angle and squeegee
blade material were chosen as the transformed factors.

It can be observed from Table 1 and 2 that the outcome of changing the squeegee angle affects the process capability,
increasing the squeegee angle from 35-40deg to 55-60 deg causes the deposited volumes closer to the nominal volume and
increases the process repeatability, where as decreasing the squeegee angle increases the volume deposit and reduces the
process repeatability.

To better understand why this occurs we need to consider what is happening at the tip of the squeegee; as the blade traverses
over an open aperture the solder paste material, under hydrodynamic pressure is forced into the opening. If the transfer force
is too high the solder paste material will start to compress and force itself under the blade and creates a “wake”. It is this
compression and wake effect that creates the high volume and reduced process capability.

This “wake” effect is most notable when observing the QFP results in table 2, with the blade set at a low angle the charts
display a duel peaked curve, after further analysis this bi modal effect represented the split between North-South and East-
West deposits.

Analysing the difference between these two aperture orientations it is clear to see that the amount of time that the squeegee
blade has to fill the North-South apertures (300 ms) is considerably longer than the East-West (46 ms), it is therefore possible
that the high transfer force associated with the longer fill time of the North-South apertures creates a greater opportunity for
the “wake” effect to take place and therefore higher volumes and reduced process capability proceeds; where as the East —
West apertures have less fill time and therefore are not subject to the “wake” issues.

The surface profiles shown in table 4 also coincide with the observations discussed above; the deposits to deposit consistency
increases and the QFP deposits become more “brick” shaped when the squeegee angle is increased from 35-40deg to 55-60
deg.



The second experiment within this transformed process section was to understand the influence of the impact that the
squeegee blade material has upon the resultant print process. The two material chosen were Tetra carbon and Chromium,
both surface finishes are recognized for their friction reducing properties.

From the results shown in table 5 it is clear to see that the Chromium finished blade is the clear winner from this “bake off”,
the chromium blade especially performs well when imaging the 0.4mm CSP device. This would indicate that the property of
the chromium coating positively influences the interface of solder paste to squeegee blade and consequently improves the
filling of small apertures.

The results from the surface profile (Table 7) interestingly show a slightly different picture, the profiles from both tests show
very little difference in print quality both look acceptable. It is by analysing this scenario that we can start to understand why
a print process could be over looked when fault finding an end of line yield issue. Taking this example into a real life
situation, the engineer would look at the profiles from the Tetra carbon results and almost certainly sign off the process as
acceptable but the data is otherwise indicating a different story, it is understandable how a print process could be wrongly
diagnosed without a full examination.

The results illustrated in Chart 6 overlay all the results from the transformed process module, it is clear to see that a 55-60
deg squeegee coated in chromium gives the best overall results.

The second module focused upon the influence of simulated interspaces within the print process; within this section the effect
of interspace relating to the stencil to substrate and tooling to substrate were investigated.

The results from Table 8 and 9 illustrate the relationship between increasing the interspace between the stencil and substrate
and print quality. It can be seen that the statistics indicate that as the interspace is reduced the process indices increase thus
signifying greater process control, the surface profiles shown in table 10 also confirms this theory.

Investigating further into the charts shown in Table 9 provides a clear understanding as to why this phenomenon occurs. It
can be seen from the 0.4mm CSP (300 microns and 200 microns) distribution chart two distinctive peaks are visible; unlike
the QFP device, the CSP is not asymmetric, therefore this twin peaks effect is not related to the fill process but more likely
associated with the release process.

To better understand how this effect could cause poor print quality we need to consider that during the moment of aperture
fill the squeegee is pushing (gasketing) the stencil onto the substrate, as the squeegee moves away from the aperture the
stencil will start to peal away from the substrate thus causing a “false separation” step. It is during this “false separation” step
that the material inside the filled apertures will be subjected to interference and depending upon the amount of stencil peel
and friction of solder paste to its interfaces, will depend how “fractured” the solder paste will become inside each
independent aperture. This effect is most striking when evaluating the surface profiles from Table 10, it can be seen that the
print deposits of the 0.4mm CSP exhibit a “fractured” structure in which the deposits are varying in shape and volumetric
quantities.

The reason why the <100 micron interspace results showed no detrimental effect can be explained by the principle that if the
“stencil peel” does not exceed the solder paste deposit height then the solder paste within the aperture will not have been
completely fractured and therefore will still follow the standard release method.

The results from this experiment conclude that if the interspace is greater then the stencil mask thickness the influence of the
“false separation “will cause a detrimental print quality.

The second experiment in this module investigated the influence of including an interspace between the substrate and tooling
assembly. The results from this experiment are shown in Tables 12 and 13. As can be seen from the statistical data, the
addition of the interspace has decreased the print quality in both accuracy (Cp) and repeatability (Cpk). Analysing the surface
profiles reveals a similar image as those of the stencil to board interspace results; thus it can concluded that this tooling to
substrate interspace has also caused a “false separation” step within the print process.

The results illustrated in Chart 7 overlay all the results from the simulated interspace module, it is clear to see that any
interspace reduces the process capability, this is especially apparent on the fine pitch CSP devices.



Throughout this investigation the following discoveries have been made:

Squeegee angle significantly influences the print quality

The squeegee material significantly influences the print quality

Interspaces between the substrate and stencil greater then the print thickness significantly influences the print quality
Interspaces between the tooling assembly and substrate greater then the print thickness significantly influences the
print quality

e Quantitative and qualitative does not always concur

The final step of this paper is to address the questions posed at the start of this section: -

It has been seen that merely observing the print quality does not tell the whole story, the print could look acceptable but the
capability of that process is questionable. This situation would lead an engineer to wrongly accept the process capability and
thus overlook the print process.

We have also seen that very small changes have large impacts; the inclusion of an interspace within the print set-up has been
highlighted as a major cause of variation. Within the real world of solder paste printing these interspaces can be introduced
through incorrect substrate solder mask thickness and incorrectly manufactured tooling assemblies, etc. It is due to these
influences that can cause the reported headline rate of 60% defect associated with the print process. It is therefore important
that the engineer fully appreciates the sensitivity that these small “environmental” influences can have on the solder paste
print process.
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e |tiIs the intention of this presentation to
understand what are the critical areas of a
print platform set-up.
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Experimental Conditions

Parameter Value & Unit

Print Speed 50mm/s

Print Pressure* 5Kg

Separation Speed 10mm

Separation Distance 3mm/s

Squeegee Angle 35 - 60 Deg

Tooling Vacuum tooling block

Temp & Humidity 21 Deg C & 40% R.H

* 35-45 deg blades required higher pressure 8Kg
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 Dek Galaxy Printer

« Commercially available Type 4 Pb free
solder paste

100 micron laser cut stainless steel stencil
* Cyberoptics SE300
e Stereo Micropsope

Equipment Set

All machines calibrated prior to experiments
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Experimental Conditions

e 3 “dummy” prints performed before each
experiment.

* 10 pre numbered boards run in sequence
for each set-up.

e DEK 08 Test board used.

e 0.4mm QFP and 0.4mm CSP used for
Investigation.
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- Breakdown of Experiments

 Transformed Process Elements
— Sgueegee angle
— Sgueegee coating

e Simulated Interspace

— Stencil to board interspace
— Board to tooling interspace
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Breakdown of Experiments

=quesgee angle
25-40°

=oueegee angle
45-30

Squeegee angle
25-60

Tetra Carbon Coating

Chromium Coating

Substrate to
stencil interspace
200 microns

cubstrate to
stencil interspace
200 microns

substrate to
stencil interspace
<100 microns

Megative tooling to
substrate interspace

and the DESIGNERS SUMMIT

Experiment 1

!

Experiment 2

}

Experiment 3

!

Experiment 4

™

Transformed
>" process elements

Module

™

: Smnulated
Interspace

Module

_——

IPC Printed Circuits Expo® APEX® .nd ne Desligners Summit 2008



Transformed Process Elements

 Why squeegee angle ?

60 deg squeegee
assembly with pressure
applied resulting in an
attack angle change.

60 deg squeegee
assembly with no
pressure applied.

Objective — To understand which angle produces the most stable process
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Transformed Process Elements

* Adjustable squeegee
assembly

« Blade thickness 200 microns * Blade length 200mm
« Blade overhang 15mm « Tested angles 35 —60 deg
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Transformed Process Elements

 Why squeegee coating ?
—_

Friction interface

Paste
Rolling

High Shear rates

Streamlines

Obijective — To understand the impact of squeegee coating on the process
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\ Transformed Process Elements

e Squeegee coating
— Tetra carbon
- C h rO m I u m (Trivalent not Hexavalent)
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Simulated Interspace

Stencil

Substrate
a) Tooling

=

NS

b
]

a) On contact.
b) Interspace created between substrate and stencil.
c) Interspace between tooling and substrate.
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e Limit Sets

Results

Theoretical Transfer Normalised
Device Width/diameter  |Length Thickness Nominal Efficiency Nominal USL LSL
0.4 QFP 230 1524 100 35052000 75% 26289000(36804600 15773400
0.4 CSP 230 100 4154756 70% 2908329/4071661 1744998

Derived from previous work

 \What will be reported

— Quantitative data - Statistics
» Cp (spread) and Cpk (accuracy)
— Qualitative data — Observations
» Surface profiles
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Results - squeegee angle

Large spread
High volumes

Tight spread
& accuracy

Tight spread
& accuracy
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Results - squeegee angle

0 dmm CSF

0. dmm OFP

— 35 -40Deg
5

- d5
D (Board 5}
)
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e 45 - 50 Deg
S Board 5)
S

28
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D 55 -60Deg
S 45
< (Board 3)
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@ 55 -60°

Results - squeegee coating
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Results - squeegee coating
@ 55 -60°

— 0.dmm CSP 0.dmm JFP 0.4 QFF
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Results - squeegee summary

Chart showing the process capability - Transformed process elements module

Odmm C35P Cp
L
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Results — forced interspace

Large spread

Dual peaks

Large spread

Dual peaks

Tight spread

& accuracy
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Results — forced interspace

Aouo1sISu0d Buisealou|
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Results — Negative tooling
Interspace

0dmm CEP 0.dmm QFF
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, Results — Negative tooling

Interspace

0. dmm CSF 0 dmim FP 0 dimm FF

MNegative
tooling
gap

JIsodap j1ua)1SISuodU|
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Results — interspace summary

Chart showing the process capability - Simulated Interspace Module

OdmmCSP Cp

pu

04mm QFF 2 Cpk Amm C5P Cok

0d4mm QFF 2 Cp Amm QFF 1 Cp

04mm QFF 1 Cpk
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- Conclusion - Squeegee angle

* Increasing the angle from 40-45° to 55-60°
significantly increases the process capability

¢ 40-45" squeegee gives higher volumes but
lower process capabillity
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Conclusion - Squeegee angle

 The increased attack angle produces a “wake”
effect
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Conclusion - Squeegee angle

N/S 0.4mm QFP aperture E/W 0.4mm QFP aperture
Print speed @ 50mm/s Print speed @ 50mm/s
Fill time = 300mS Fill time = 46mS

« At high attack angles N/S apertures tend to over

fill w.r.t E/W = unbalanced process.
@PC
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Conclusion - Squeegee angle

S0 how does this effect my process ?

e An operator can adjust to attack angle with
pressure

 Increasing the squeegee pressure (to
mask set-up issues) will increase attack
angle.
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I Conclusion - Squeegee angle

 The sgqueegee material significantly influences
the print quality
— Increased process capability observed from
chromium coating
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Conclusion - Interspace

* Any interspace between stencil, substrate
and tooling will cause poor process
capability.

False separation

Peel

Interspace

Varying interface
“fractures”

L
’

i

Varying volumetric
deposits
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Conclusion - Interspace

S0 how does this effect my process ?

— Debris on stencil, board or tooling will produce
an interspace.

— Poorly maintained machines can cause
critical settings to drift

— Poorly fabricated tooling and boards can
cause interspaces.
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Thank you for your attention

Clive Ashmore
cashmore@dek.com
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