Optimizing Throughput and Cost with Manufacturing Simulation
Electronics assembly can be delivered at competitive market prices only as long as the manufacturing process is continuously improved. Manufacturing companies are mastering with the help of Industry 4.0and simulation tools: a high degree of variance, continuously shrinking batch sizes, and fluctuations in order volume that are increasingly difficult to predict. The word “simulation” is defined as the computer-based modeling of the operation of a real-world process or system over time. With this definition in mind, it is easy to understand why simulation is ubiquitous in engineering and industrial organizations; imitating a real-world process or system allows experts to study the process or system they are interested in within a controlled environment. Manufacturing simulation allows companies to identify manufacturing bottlenecks and opportunities to increase throughput, identifying cost savings opportunities such as optimization of direct and indirect labor, managing inventory levels, and validating the expected performance of new or existing production facilities or value streams. Manufacturing simulation consists of plant simulation and process simulation. Plant simulation enables studies of material flows, bottleneck analysis at the area and line level, movement optimization, AGV movement simulations, and resource optimization studies. Process simulation enables studies of processes and operations to optimize sequencing of operations, robot and collaborative robots (“cobot”) operations, spatial risk analysis when humans are close to robots and cobots, and ergonomics simulation for optimal human movement. Simulation ensures compliance to Lean Manufacturing methodologies and removal of “waste.” We answer the question; is manufacturing simulation applicable and effective in electronics assembly manufacturing?
This paper describes the design and implementation of several manufacturing simulation use-cases at an electronics assembly factory in Nanjing, China. This factory has six surface mount lines, fairly high product mix and variants, and also demands some high-volume production. Also, they have integrated circuit (ICT)and system tests, manual assembly lines, software loading stations, box-build cells, packing and labeling, shipping and, aftermarket service and depot repair. The chosen factory is an ideal candidate for testing the effectiveness of manufacturing simulation in electronics manufacturing. We describe the use-cases investigated, the approach, KPIs used to monitor progress, changes made to production, and the results of the theoretical simulation vs. actuals. We will also discuss using the Digital Twin of the factory and processes in additional use cases, such as sales evaluation and estimation validation. Finally, we publish results that may be used as an example of how other factories can use simulation to optimize throughput and cost in their factory to make steps forward in their digitalization journey and remain competitive.