Oxidation and Topography of Powder in Pb-free Solder Paste
There are compelling reasons to study the relationship between oxidation and the topography of solder powder; these
include the following:
?? Customer requirements to reflow SAC-based (SnAgCu) lead-free solder paste with profiles that are considerably
longer than those used for lead-bearing products. The ultimate challenge in this requirement is to reflow using these
longer profiles without a nitrogen blanket;
?? Early developments with more reactive lead-free products such as Sn/Zn solder paste revealed the fact that some of
these materials not only showed a lower wetting potential but also an inferior mobility when compared to traditional
solder paste;
?? As an ISO-TS-16949 certified company,one of our main goals is the continuing quest for further reduction in the
variation of our products.
Qualification studies and field experience by major end users of Pb-free solder paste have uncovered significant issues
with the material; these include surprisingly short shelf life of several types of Pb-free solder paste and significantly
variable results regarding voiding. We are of the opinion that both phenomena have a potentially common root,and that
is oxidation of the solder powder during production. It is common knowledge that oxidation appears to be selfpropagating.
So,when solder paste is manufactured with powder that is relatively oxidized,it will further deteriorate
once it is in suspension with specific flux systems. Thus,shelf life may become surprisingly short,evidenced by a solder
paste that,for example,has unexpectedly become as hard as concrete.